ADVANCES IN PRECISION CONSERVATION

 

Jorge A. Delgado1 and Joseph K. Berry2

 

1USDA-ARS, Soil Plant Nutrient Research Unit, Fort Collins, CO, 80526; 2Denver University, Geography Department, Denver, CO, 80208

 

Journal of Advances in Agronomy, 2008, accepted- in press, Winter 2008

 

Abstract

 

Population growth is expected to increase, and the world population is projected to reach ten billion by 2050, which decreases the per capita arable land. More intensive agricultural production will have to meet the increasing food demands for this increasing population, especially because of an increasing demand for land area to be used for biofuels. These increases in intensive production agriculture will have to be accomplished amidst the expected environmental changes attributed to Global Warming. During the next four decades soil and water conservation scientists will encounter some of their greatest challenges to maintain sustainability of agricultural systems stressed by increasing food and biofuels demands. We propose that Precision Conservation will be needed to support parallel increases in soil and water conservation practices that will contribute to sustainability of these very intensively-managed systems while contributing to a parallel increase in conservation of natural areas. The original definition of Precision Conservation is technologically based, requiring the integration of spatial technologies such as global positioning systems (GPS), remote sensing (RS), and geographic information systems (GIS) and the ability to analyze spatial relationships within and among mapped data according to three broad categories: surface modeling, spatial data mining and map analysis. In this paper we are extending the definition as follows: Precision Conservation is technologically based, requiring the integration of one or more spatial technologies such as GPS, RS, and GIS and the ability to analyze spatial relationships within and among mapped data according to three broad categories: surface modeling, spatial data mining, and map analysis. We propose that Precision Conservation will be a key science that will contribute to the sustainability of intensive agricultural systems by helping us to analyze spatial and temporal relationships for a better understanding of agricultural and natural systems. These technologies will help us to connect the flows across the landscape, better enabling us to evaluate how we can implement the best viable management and conservation practices across intensive agricultural systems and natural areas to improve soil and water conservation.

 

Keywords: geographic information systems, global position systems, precision conservation, precision farming, and remote sensing