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Are You a GIS Dead-head? 
(GeoWorld,   )    
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Even if you are new to GIS you must have encountered the scholarly skirmishes between the raster-heads 
and the vector-heads.  Like other religious crusades the principles in these debates are frequently lost to 
mindsets reflecting cultural exposure and past experience.  However, more often than not, most of us just 
become catatonic when the discussion turns to GIS data structures.  But what the heck, it's worth another 
try. 
 
Let's review the basic tenets of vector and raster data (Beyond Mapping columns July through September, 
1993) then extend this knowledge to the actual data structures involved.  Vector data uses sets of X, Y 
coordinates to locate three basic types of landscape features— points, lines and areas.  For example, a 
typical water map identifies a spring as a dot (one X,Y coordinate pair), a stream as a squiggle (a set of 
connected X,Y coordinates) and a lake as a glob (a set of connected X,Y coordinates closing on itself and 
implying its interior).  Raster, on the other hand, uses an imaginary grid of cells to represent the landscape. 
 Point features are stored as individual Column, Row entries in the grid; lines are identified as a set of 
connected cells; and areas are distinguished as all of the cells comprising a feature. 
 
This traditional representation constrains geographical phenomenon to three user-defined conditions 
(points, lines and areas) and two GIS expressions (vector and raster).  I bet this conceptual organization is 
fairly comfortable, and might even be familiar.  But that's only half the problem— this user/GIS 
representation has to be translated into a database/hardware structure.  At this step most of us simply 
glaze-over and leave such details to the GIS jocks.  Actually, the concepts aren't all that hard and they can 
explain a lot about different systems, frustrations you encounter and future directions of GIS.   



 
Let's consider some structures for raster data.  The left side of figure 1 shows an imaginary grid 
superimposed on a typical soil map (more appropriately termed a "data layer").  The center portion of the 
figure identifies a matrix of numbers with a numerical value assigned to each cell.  In this case, the value 
represents a particular type of soil and it's positioning in the matrix indicates its location.  To the computer, 
however, the matrix isn't a 2-dimensional array; it’s simply one long list of numbers.  The first number 
represents the upper-left corner of the matrix, and rest are ordered like you would read a book— from left 
to right, top to bottom.  Another map for the same area, say elevation, would be stored as a separate 
ordered sequential file.  This is the simplest and most frequently used raster data structure.   
 

 
 

Figure 1.  Raster Data Structure Elements.  A file containing a matrix of numbers (attribute values) characterizes 
each cell of an imaginary grid.  An alternative structure uses a standard database file containing the 

column/row identifiers for each cell followed by attribute fields, such as soil type and elevation. 
 
An offshoot of this structure is used for most remote sensing data.  Each cell in the grid represents a small 
area on the earth's surface where the satellite collected "spectral data."  The numbers it collects record the 
relative amounts of energy, such as blue, green and red light radiating from the surface.  The set of values 
for each energy level represents a single data layer which could be arranged as a matrix and stored 
separately as noted above.  These data, however, are more efficiently stored as an interlaced matrix with 
all of the measurements for each cell sequentially stored.  For example, the first three values might 
represent the blue, green and red light measurements for the upper-left cell with the following triplets of 
values for the other cells sequenced left to right, top to bottom as before.   
  
The interlaced structure has a significant advantage in point-by-point processing because all information is 
contained in a single file and readily available as the computer methodically steps through the matrix.  It 
doesn't have to open three separate files, and then read blue, green and red values that scattered all over the 
disk.  That means a lot less disk-thrashing and a whole lot happier computer.  This might not seem a big 
deal to you, but considering that a typical Landsat TM scene contains seven data layers for about 36 
million cells (that's over 250 million numbers!), even a slight increase in storage efficiency is cyber heaven. 
 
The interlaced structure might be neat and tidy for remote sensing data, but it is inappropriate for a general 
GIS.  First, it's tough to add a new map.  It means that extra room must be made to insert the new values 
by reading the first three values from the original file, writing them to a new file, inserting the first new 
value, then repeat the process for the other million or so cells... oh yes, then delete the original file.  And 



you have the same problem if you want to delete a map.  Secondly, since the information for each data 
layer is dispersed (every third value), it is difficult to compress the redundancy found in a typical map.  
Finally, any processing involving neighboring cells requires extra work as the computer must continually 
jump back and forth in the file to get values for the cells above, below, right and left of the target cell.  In 
short, the interlaced structure is best for specialized applications involving a fixed number of maps 
constrained to point-by-point processing. 
 
So what else do we have in raster structures?  Consider the right side of the figure.  This structure uses a 
standard database file (termed a "database table") with the column, row entries of the matrix explicitly 
stored as "fields" (i.e., separate columns).  The subsequent fields contain the listing of values for various 
data layers.  Note that the set of soil values under the V1 heading correspond to the left-most column of the 
matrix.  If there was room in the figure to list the rest of the values in the field, the next set would replicate 
the next column to the right in the matrix, then the next, and so on.  The V2 listing depicts elevation values, 
similarly organized.   
 
Now comes the advantage... suppose you wanted to find all locations (i.e., cells) which contain soil type 4 
and are over 550 feet in elevation.  Simply enter an SQL (sequential query language) command and the 
computer searches V1 and V2 for the specified condition.  A new field (V3) will be appended containing 
the results.  It is a piece-of-cake because you are using a standard database file under the control of a 
standard database management program.  This standardized structure makes it easy for the GIS 
programmer as he doesn't have to write all the code that is already in the database "engine."  Also, it allows 
you to store and process text string designations, as well as numerical values.  More importantly, it makes 
it easy on the user as the command uses the same format as a normal office database. 
 
The problem is with the computer.  It hates appending new fields to an existing table.  Also, the number of 
fields in a single table is severely constrained.  The solution is a series of indexed tables with each cell's 
designation serving as the common link.  With an indexed structure the computer can easily "thread" from 
one table to another.  Actually, there are good arguments to store each data layer as a separate indexed 
table.  Creation, modification and deletion of a map is a breeze as it affects only one table, rather than an 
embedded field in a complex table.  That seems to bring us back to where we began— one map, one file.  
But in this instance, each map is a standard indexed database table with all of the rights, privileges and 
responsibilities of your office database.  It puts raster GIS where it should be... right in the midst of 
standard database technology.  As we will se next month, vector GIS has been there all along. 
 
 

Raster Is Faster, but Vector Is Corrector 
(GeoWorld,   )    
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Your computer really loves raster data— a cell on one map is at the same position as on all others.  A 
couple of "hits-to-disk" and it knows everything about a cell location.  A few more hits up, down, left and 
right and it knows everything about a location's entire neighborhood.  If fact, it can "walk" from one 
location to another and find everything it needs to know along the way, right from the hard disk.  Its world 
is pre-defined in little byte size pieces that are just right. 
 
However, it's the computer-endearing qualities of consistency and uniformity that makes raster data at odds 
with the human psychy (and a lot of reality).  We see the unique character of each map feature— a cute 
little jog here, a little bulge over there.  The thought of generalizing these details into a set of uniform 
globbies is cartographic heresy.   



 
So what does it cost your computer, in terms of data structure, to retain the spatial precision you demand?  
First, because every map feature is unique, a more complicated data structure is required.  Consistency and 
uniformity are out; uniqueness and irregularity are in.  More importantly, processing involves threading 
through a series of linked files (termed tables in DB-speak), mathematically constructing map features, 
calculating the implied coincidence, then reconstructing the new data structure linkages.  All this just to 
know that the property line isn't a hundred feet over there... picky, picky. 
 

 
 

Figure 1.  Vector Data Structure Elements.  A set of files links coordinates, arcs and features to describe location. 
 A standard database file links each feature to its attributes, such as soil type and elevation. 

 
Figure 1 identifies the basic elements of vector data structure.  It begins with a points table attaching 
coordinates to each point used in the construction of map features.  Most systems use latitude and longitude 
as their base coordinates.  This is a good choice as it is a spherical coordinate system accurately locating 
points anywhere on the Earth's surface.  However, it is a problem whenever you want to relate points, such 
as measuring distances, bearings or areas.  In three dimensions seemingly simple calculations involve solid 
geometry and ugly equations that bring even powerful computers into their knees.  Plus, the 3-dimensional 
answers can't be drawn on a flat screen.  The solution is to carry a user-specified map projection scheme 
and planar coordinate system (e.g., Universal Transverse Mercator), then translate on-the-fly.  Now the 
computer can work in any 2-dimensional rendering you choose and easily display the results on your screen 
or plotter... happy computer, happy you. 
 
For point features, the point table and its 2-D translation specifications are directly linked to another 
indexed file containing descriptive information, termed attributes, about each point.  If this information 
depicted soil samples, you could query the attribute table for all of the samples that have a PH less than 7 
and available phosphorous exceeding 30 parts per million.  The results from the attribute query simply 
"threads" to the coordinates of the subset of points meeting the conditions, then plots them at blinding speed 
in the vibrant color of your choice. 
 
Line and area features are a bit more complicated because the various connections among sets of points 
need to be specified.  When you view a human-compatible map of water features you intuitively note which 
stream is connected to which stream by the network of blue squiggles.  You note lakes are blue globs with a 



squiggle in and another out.  But the computer's point file is just a huge pile of unrelated numbers.  The 
first level of organization is a linked arcs table.  This file groups the points into connected sets of arcs 
forming the map features.  In the figure points P1, P2, P3 and P4 are connected to form arc A1.  Arcs A2, 
A3, and A4 are similarly defined by their linked coordinates. 
 
The features table puts it all together in geographic space by linking the arcs to actual map features.  In the 
example, feature F7 is formed by linking arcs A1, A2, A3, and A4.  The corresponding arcs table identifies 
which points are involved, with the coordinates in the points table ultimately tying everything to the ground. 
 At the top of this scheme is a linked info table with the attribute data for each map feature.  In the 
example, feature F7 is identified as having soil type 4 (V1) and an average elevation of 723 (V2).   
 
There, that's not too bad— conceptually.  The tough part comes when you try to put it all into practice with 
about 100,000 polygons.  That's where each vendor's "secrete ingredients" to the general vector recipe take 
hold.  Without giving away any corporate secretes, let's take a look at some of the "tweaking" possibilities. 
  
 
In addition to the link to the points, the arcs and feature tables often contains “topological” (geometric 
relationships among the points, lines and polygons) and other sundry information.  For example, note that 
arc A1 forms a shared boundary between features F7 and F8 as listed in the "Topo" field of the arcs table 
(7/8).  For maps composed of contiguous polygons (e.g., soils, covertype, ownership, and census tracks) a 
search of this field immediately identifies the adjoining neighbors for any map feature.  Many systems store 
frequently used geometric measurements, such area as depicted in the "Topo" field of the features table 
(22.1 acres).  The alternative to these tweaks in data structure design is a lot of computational thrashing 
and bashing each time they are needed.  
  
Line networks use topological information to establish which arcs are interconnected and the nature of their 
connections.  In a stream network it depicts the direction of water flow.  In a road network, it characterizes 
all possible routes from any location to all other locations.  However, to fully describe this linkage a new 
element must be introduced— the node.  These special points are indicated in the figure as the large dots at 
the ends of each arc (P1, P4, P6, and P11).  Nodes represent locations where things are changing, such as 
the separation of adjacent soil units along a soil boundary.  Some systems store nodes in a separate table, 
while others simply give them special recognition in the points table.  The information associated with a 
node is a reflection of the type of data and the intended processing. 
 
If the length of each arc is stored, the computer can find the distance from a location to all other locations 
by simply summing the intervening arcs along a route.  If an average speed is stored for each arc, the 
answer will be in travel-time.  But what about one-way streets and the relative difficulty of left and right 
turns at each intersection (i.e., node)?  Attach this information to the nodes and the computer will make the 
appropriate corrections as it encounters the intersections along a route.  Similarly, an accumulated distance 
from a location to its surroundings can be determined by keeping a running sum of the arc distances, 
respecting the "turntable" information at each node.  Once this is known it is an easy matter to determine 
the "optimal path" (shortest time or distance) from any location to the starting point.   
 
But all is for not if your data structure hasn't been "tweaked" to carry the extra topological and calibration 
information.  It should be apparent that, unlike raster, vector data structures can be radically different.  
Ingenuity and programming dexterity are critical factors, as is the matching of data design to intended 
applications and hardware.  That's the tough part... there isn't a "universal truth" in vector data structure.  
The onus is on you to pick the right one for your applications, and then understand it enough to take it to its 
limits. 
 



 

How’s Your Quads and TINs? 
(GeoWorld,   )    
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Original flavored raster and vector data structures have been around for a long time.  The basic concepts in 
representing a landscape as a set of grid cells or a set of connected points are about as old as cartography 
itself.  The technical refinements required for a functioning GIS, however, are continually evolving.  It 
seems about the time you think we have reached the pinnacle of data structure design, someone comes out 
with a new offshoot.  The only folks that think they have it all are over-zealous marketers.  The technical 
types keep their heads down, constantly looking for more effective ways of characterizing mapped data. 
 
Most raster systems have the ability to perform Run-length Compression that compacts along the rows or 
the columns.  For example, consider the following matrix and its row-compressed translation. 
 
   Full Matrix   Run-Length (Row) 
   111111122222222223  1,7,2,17,3,18 
   111111122222222233  1,7,2,16,3,18 
   111111122222222333  1,7,2,15,3,18 
   111111222222223333  1,6,2,14,3,18 
   111113333333333333  1,5,3,18 
   111113333333333333  1,5,3,18 
   111113333333333333  1,5,3,18 
   111333333333333333  1,3,3,18 
   111333333333333333  1,3,3,18 
 
The run-length data structure uses just 44 numbers to represent the 162 numbers in the full matrix.  It uses 
"value, through column" pairs of numbers to compact the redundancy along a row.  For example, the first 
row is read "value from column 1 (assumed) through column 7; value 2 from column 8 (last column plus 
one) through column 17; and value 3 from column 18 through column 18."  This format is particularly 
useful in map display.  Instead of "hitting disk" for the color fill pattern value at each cell, the computer 
reads the pattern designation and then simply repeats the pattern as specified by the column spread.  That's 
both a savings in storage and increased performance— a win, win situation. 
 
So why don't we compress in both the row and column directions at the same time and get even more?  In 
effect, that is what a Quadtree data structure does.  It is an interesting second cousin to the traditional 
raster data structure that uses a cascading set of grid resolutions to compress redundancy.  Consider the 
map boundaries shown in Figure 1.  If the map window is divided in half in both the X and Y directions, 
four panels (quadrants) are identified.  This has the effect of superimposing a very course grid of just two 
columns and two rows.   
 
At this point the computer tests if any quadrant wholly contains a single map characteristic.  In the example 
there are none, so each panel is divided into their quads (Level 2).  At this point, there are seven of the 
sixteen quadrants wholly containing a single characteristic.  Their positions in the 4x4 grid are noted, and 
the remaining nine mixed panels are divided into their quads (Level 3).  Fourteen of these are noted as 
completed, and the remaining 22 are divided for Level 4 of the quadtree.  The process is repeated until an 
appropriate quad level resolution is reached.  At level 16, a gridding resolution of 65,536 by 65,536 is 
available wherever it is needed... that equates to a fixed raster grid of 4,294,967,296 cells!  But the 
quadtree is not forced to use this resolution everywhere, and accurately stores most maps in less than a 



megabyte. 
 

 
 

Figure 1.  Quadtree Data Structure Elements. 
 
Quadtrees and run-length structures are good at compressing raster data.  However, they must be 
decompressed then recompressed for most map analysis operations.  A lot of GIS systems have chosen not 
to impose a compression routine within the data structure, but simply to leave it up to commercial hard disk 
compression packages, such as PKWare or Stacker.  These packages not only respond to data redundancy, 
but optimize for disk head movement as well. 
 
Triangulated Irregular Network, or TIN data structure, is a vector offshoot originally designed for 
elevation data.  It avoids the redundancy of elevations in a normal raster representation, and is more 
efficient for some terrain analysis operations, such as slope and aspect.  It uses a set of irregularly spaced 
elevation measurements, with intensive sampling in areas of complex relief and/or important features, such 
as ridges and streams.  A bit of computer wizardry is applied to determine the network of triangular facets 
that best fits these data.  Each facet has three interconnected elevations and can be visualized as a tilted 
triangular plane.  The direction cosines of the plane identify its slope and aspect.  The average of the three 
elevations generalizes the plane's height.   
 
As shown in Figure 2, the XY coordinate (location) and the Z coordinate (elevation) are stored in a points 
table.  Similar to traditional vector structuring, the triangular facets are defined in a features table by their 
three nodes and adjoining facets.  The final link is to an attribute table containing descriptive information 
on each facet.  Awesome shaded relief maps can be generated by plotting the facets in 3-D and shading 
them as a function of their slope and aspect. 
 



 
 

Figure 2.  TIN Data Structure Elements. 
 
Using a TIN structure, instead of raster, to characterize a 3-D surface has some significant advantages— it 
usually requires fewer points, captures discontinuities like streams and ridges, and determines slope and 
aspect of the facet itself.  It is the data structure of choice for most civil engineering packages dominated by 
terrain analysis.  However, it's inappropriate for a generalized GIS mixing a variety of maps.  First, it is 
like raster as it uses a mosaic of geographic chunks to represent a map feature.  However, the chunks are 
inconsistent between maps, and something as simple as map overlay takes a severe hit in performance.  
Also, the 2-D renderings of TIN is extremely complex and bewildering to most users compared to a normal 
vector plot.   
 
Quadtree and TIN are useful offshoots of basic raster and vector data structures.  They provide important 
benefits for certain data under certain conditions... if they match your needs; they're an invaluable addition 
to your GIS arsenal. 
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Rasterized Lines and Vectorized Cells 
 
Chances are your GIS is (or will be) ambidextrous.  It will have a vector side and a raster side, and might 
even have TIN or quadtree sides.  The different data structures indicate differing perspectives on both data 
type and user application.  The vector approach characterizes discrete map objects and was strongly 
influenced by applications in computer graphics.  Raster, on the other hand, characterizes continuous 
mapped data and emerged from remote sensing applications involving multivariate statistics. Today, 
considerations in database/ hardware structure are influencing future development as much as historical 
user/GIS representation theory.  In a sense, the realities of an evolving computer environment are 
challenging traditional ways. 



 
Rasterized lines are an interesting offshoot from the traditional data structures.  It's sort of a hybrid, as it 
uses a grid structure to characterize a map's line-work.  An optical scanner is used to "turn-on" each cell in 
a fine sampling matrix that corresponds to the set of lines.  This process is similar to your office fax 
machine reading a document.  The fax at the other end simply deciphers the on and off conditions in the 
matrix and shoots a dab of black ink at spots corresponding to "on."  It skips over the "off" spots leaving 
just white paper.  That's it, a black and white rendering of the map's lines pushed over the phone lines.   
 
If you use a magnifying glass, you can actually see the individual dots.  But at normal viewing distances 
they merge to form smooth lines.  Your brain easily makes sense of the pattern of lines and implied 
polygons embedded in the fine grid of the sampling matrix.  Which streams are connected to which streams 
…and which lakes are in which watersheds …are obvious from the graphic rendering.   
 
But that's not the case for a computer... it's just a jumble of on and off dots.  The first step in imposing data 
structure order is to locate and mark as nodes the entire set of special dots where lines meet (intersections), 
or are just hanging out there by themselves (end points).  Traditional vector structuring "follows" the dots 
between nodes, storing the coordinates for a point whenever there is a significant X or Y deflection.  The 
result is a series of discrete points connected by implied straight lines, as shown in inset 2 of Figure 1.  The 
nodes and intervening points are then arranged as series of indexed files, as described in the previous 
article. 
 

 
 

Figure 1.  Rasterized Lines Data Structure Elements. 
 
Rasterized lines, on the other hand, retain all of the dots along the lines.  At first this seems stupid as the 
points file is huge.  Where an arc might require ten discrete points, a rasterized line might require a hundred 
or more.  Some tricks in data compression and coordinate referencing can help, but anyway you look at it 
storage is a lot more.  So why would anybody use a rasterized line structure?  Primarily because it is a 
format hardware loves.  Faxes, scanners, screens, plotters and printers are all based on dot patterns.  As a 
result, there is a lot of attention being paid to the efficient handling of dotted data.  Also, advances in 
optical disk storage and memory chips are redefining our concepts of a "storage hog," and these files seem 
smaller each year. 



 
More importantly, however, are the advancements in CPUs (central processing units).  Most computers still 
use a "kur-plunk-a" processing approach developed in the 1940's.  It mimics our linear thinking and the 
way we do things... do A, then B, then C.  Array and parallel processors, on the other hand, simultaneously 
operate on whole sets of data, provided they are properly organized.   
 
Suppose you want to overlay a couple of traditional vector maps.  At an instant in time, the computer reads 
the coordinates for two points on one map, then has to figure out if the implied line segment between them 
crosses any other implied line segment on the other map.  If it does, mathematically calculate the point of 
intersection, split the two lines into four, then update all of the indexed tables... whew!  This approach is 
not only a lot of work; it's a purely linear process and a miss-match for array processing.   
 

 
 

Figure 2.  Vectorized Cells Data Structure Elements. 
 
If the data is in rasterized line format, however, an array processor merely reads the corresponding chunks 
of cells on both maps, and multiplies them together (a Boolean operation for you techy types).  The product 
array identifies the composite of the two maps and highlights the new nodes where lines crossed.  Don't get 
me wrong, I am not advocating you run out and buy a rasterized line system, but it has some interesting 
features that may play to tomorrow's computers. 
 
Another interesting offshoot is Vectorized cells, as shown in Figure 2.  It cheats by storing each cell of an 
analysis grid as an individual polygon.  It just happens that all of the polygons have the same square 
configuration and adjoin their neighbors.  From a traditional vector perspective, each point defining a cell is 
a node; each cell side is an arc composed of just two nodes; and each cell is a polygonal feature composed 
of just four arcs.  This approach utilizes the existing vector structure without impacting the existing code.  
It simply imposes consistency and uniformity in the polygons.  All that is needed is an import module to 
generate the appropriate configuration of vectorized cells and read the raster values into a field in the 
corresponding attribute table.  Raster to vector conversion can be completed by dissolving the "pseudo-
boundaries" between adjoining polygons having the same value.  Line features can be converted by 
connecting the centers of cells of similar value.  Point features are represented by the coordinates of 



isolated cell centers.   
 
Vectorized cells were initially used to "kludge" a link from raster to vector systems.  However, the inherent 
consistency and uniformity of the structure (four points to a polygon), coupled with advances in data 
compression and database technology might lead to a resurgence in interest.  Things are fluid as computers 
are becoming less bounded by storage and the industry is shifting toward new processors and operating 
systems.  During all this, keep in mind that there are only two things certain about data structures— 1) 
tomorrow there will be another one, and 2) what is good for one application isn't necessarily the best for 
another.   
 
______________________________ 
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