Backcountry Emergency Response: Extending E911 Beyond the Roads

Calculating On-Road Travel-time. The on-road travel-time (TT) surface from headquarters uses friction values for each grid cell that calibrates the time it takes to cross it (0.1 minute). The result is an estimate of the shortest travel-time to reach any road location forming a "rollercoaster-like surface" with the lowest point at Headquarters ($\mathrm{TT}=\mathbf{0 . 0} \mathbf{~ m i n ~ a w a y) ~ a n d ~}$ increasing to the farthest away location of $\mathbf{2 6 . 5}$ minutes.

Calculating Off-Road ATV Travel-time. Note that the combined Truck and ATV travel-time surface extends the movement off the roads while retaining the bowl-like shape. The grey areas in the figure identify locations that are too steep for ATV travel and the "escarpment-like" feature in the center treats the river as an additional absolute barrier. The farthest away location accessible by truck and then ATV is $\mathbf{5 2 . 1}$ minutes.

Calculating Hiking Travel-time. The emergency response surface is completed by continuing to accumulate

 Hiking time from where the accumulated travel-time by Truck and ATV stopped. Note the very steep rise in the surface (blue tones) resulting from the slow movement in the steep terrain of the canyon area. The farthest away location accessible by truck, then ATV and hiking is estimated at 96.0 minutes.

Identifying Optimal Paths. The steepest downhill path over the TT surface identifies the "quickest route." The first segment routes the truck travel (red= 19 min), then ATV's are move off-road (cyan= 15 min) and then the rescue team hikes the final segment (violet= $\mathbf{6 2} \mathbf{~ m i n}$) for a total time of 96 minutes ($19+15+62=96$).

..- from classiroom theory and experience to practical application

USFS funded wildfire attack project using ArcilsTM developed by Fire Program Solutions, LLC

Wildfire Attack Zones. Three separate travel-time surfaces are developed. The Ground Attack model is similar surfaces are developed. The Ground Attack model is similar
to the classroom exercise except just a single friction surface is used for on-and off-road travel-times. The Helicopter Landing model considers elevation ceilings, terrain steepness,
cover types and glide paths to determine potential "Landing cover types and glide paths to determine potential "Landing Zones." The Helicopter Rappelling model considers elevation ceilings, terrain steepness and cover types to identify locations suitable for rappelling attack. The three travel-time
surfaces are compared to identify the attack mode with the minimum response time and the differential times for alternative attack modes for all of the western U.S. Forest Service lands at a 30 m ($1 / 4$ acre) resolution ...an emergency response map composed of millions and millions of locations.

Online References. A more detailed discussion of "Backcountry Emergency Response" is available in the online book Beyond Mapping III posted at www.innovaivesis.com/basis/MapAnalysis Topic 29 , "Spatial Modeling in Natural Resources," sections 4-6; sections $9-10$ describe the "Wildfire Attack Zones" project. A comprehensive discussion of the SpatialSTEM approach for teaching grid-
based map analysis concepts, modeling and applications is posted at www.innovativegis.com/Basis/Courses/SpatialSTEM/. This approach is designed for developing spatial reasoning skills through a map-ematical framework extending traditional quantitative data analysis concepts commonly taught in the science, technology, engineering and math disciplines that resonates with both GIS specialists
and non-GIS students. All of the rovalty-free instructional materials to include lecture PowerPoints, readings, exercises and MapCalc software supporting a variety of teaching environments are posted. and non-GIS students. All of the royalty-free instructional materials to include lecture PowerPoints, readings, exercises and MapCalc software supporting a variety of teaching environments are posted.

