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One of the most important characteristics of a GIS is that it can be used as a spatial decision 
support system (SDSS).  A GIS can act like an SDSS because it is possible to subject the data 
stored within a GIS to mathematical manipulations.  According to Gail Langran (1989), the 
ability to analyze data distinguishes first-generation GISs (which could do no more than store, 
retrieve, and display data) from the second-generation systems that have these powerful 
processing capabilities. 
 
These mathematical manipulations require a variety of equations and procedures that have their 
own simplicity, logic, and beauty.  The purpose of this white paper is to introduce you to some of 
the key areas of mathematical manipulation used in a GIS.  The appendix stresses the elegance 
of these formulae and equations, as well as their cleverness and usefulness-a common 
approach in many expository, mathematical texts (see, for example, Salem et al., 1992; 
Gardner, 1978; and Dunham, 1991).  The idea is that if you have a deep, intuitive understanding 
of the logic and elegance of the equations then you'll more likely remember and retain that 
knowledge.  In addition, for each formula one or more key references are included that allow 
readers to dig much deeper into this treasure trove of powerful mathematical tools. 
 
To be included, these formulae meet some of the following criteria: 
 

 They are widely used. 

 They are the fundamental building blocks of many key GIS algorithms and analytical 
procedures. 

 They impart powerful ideas (see Papert, 1980, for an extended discussion of this concept). 

 They should be representative of and related to other key formulae. 
 
Most vector-based GISs traditionally used a hybrid structure for data storage (Healey, 1991).  
That means locational information is stored separately from attribute data.  Attribute data 
represent the characteristics of whatever is being mapped.  Thus, many GISs, such as 
ARC/INFO from Environmental Systems Research Institute, Inc. (Esri), Redlands, California 
(see GIS World Sourcebook 1995 from GIS World, Inc., Fort Collins, Colorado, for a detailed 
description of GIS packages and the companies that market them), use proprietary software to 
store the spatial information and a relational database for the attribute information.  The 
proprietary spatial software may be their own, as in the case of Esri, or commercially available 
computer-aided design (CAD) software.  Occasionally some systems use integrated 
approaches, but that is much less common.  I follow the hybrid approach here and divide the 
algorithms and equations into two groups: spatial and nonspatial. 
 

SPATIAL FORMULAE 
 
1. The Oldest of Them All 
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Perhaps the most beautiful of all is the oldest.  It is the formula for distance between two points 
and is based on Pythagoras’ 'theorem from the sixth century B.C. (see Dunham, 1991, for 
historical details). 
 

D = ( | X1 – X2 | 
2 + | Y1 - Y2 | 2 ) 1/2 

 
The two points are represented by their X and Y coordinates in a Cartesian space.  Thus, X1 
and Y1 represent the coordinates of the first point, and X2 and Y2 represent the coordinates of 
the second point.  D is the straight line distance between the two points.  The vertical bars mean 
take the absolute value.  The 1/2 exponent is, of course, the square root.   
 
The equation is a fundamental building block in many GIS algorithms.  Distance is important in 
many GIS procedures.  For example, if a GIS analyst uses a spatial interpolation method, such 
as a distance weighted moving average (see spatial formula No. 7), to produce an interpolated 
surface or "drape," he or she probably will interpolate a square grid of points from an irregularly 
spaced dataset.  Each point on the grid will be a distance weighted average of the six nearest 
points in the original dataset.  The above equation is required to determine the six nearest 
points.  
 
Many other algorithms are made more efficient if the number of possibilities that have to be 
considered are reduced, and that is achieved often by considering only the closest points.  The 
Very Important Points Algorithm for choosing points to be part of a triangulated irregular net- 
work (TIN) model requires distance calculations.  The TIN model is a more efficient alternative 
to the digital elevation model (DEM) for representing a surface (see Unit 39 in the Core 
Curriculum developed by the National Center for Geographic Information and Analysis (ruccra) 
by Goodchild and Kemp, 1990; and also Weibel and Heller, 1991). 
 
If the "twos" in the exponents are replaced by R, then R is known as the Minkowski metric.  
When R=1 we have the so-called city block or Manhattan distance.  That formula has been 
used ingeniously in location-allocation modeling where the analyst uses the GIS to suggest the 
optimum location for a facility, such as a fire station or a fast food restaurant, and then 
determines the allocation of residences or potential customers to that facility.  The facility users 
are allocated to the facility to which they live closest, hence the need for distance calculations.  
Location-allocation modeling is one of the most useful applications of GIS in the public and 
private sectors.  Excellent reviews are provided by Ghosh and Rushton (1987).  It is 
interesting that Esri has seen fit to include state-of-the-art location-allocation modeling 
procedures only in the most recent revision of ARC/INFO (Version 7).  However, the procedure 
has been incorporated into Caliper Corporation's TransCAD package for several years.   
 
Distance calculations are important in clustering algorithms, Voronoi or Thiessen polygon 
algorithms, and nearest neighbor routines in point pattern analysis that are used to determine 
the adequacy of spatial sampling procedures. 
 
2. The Intersection of Two Lines 
 

Xi = - ( a1 –a2 ) / ( b1 – b2 ) 
Yi = a1 + b1Xi 

 
In the equations above, the b terms represent the slope of the first and second lines, and the a 
terms represent the intercept with the Y or vertical axis in the Cartesian coordinate system.  The 



equations for the two straight lines from which these terms are derived are given by the 
following equations: 
 

Y1 = a1 + b1X1 
Y2 = a2 + b2X2 

 
The initial formulae, which provide the X and Y coordinates of the point of intersection (point 
Xi,Yi), are another beauty from the field of coordinate geometry, or as GIS techies say, "COGO."  
Coordinate geometry is one of the most useful branches of mathematics for GIS design.  It is 
also one of the more accessible, because the rudiments of the subject usually are taught in high 
school mathematics classes.  There are many useful texts in this area.  One of the more 
technical and comprehensive is Hartley (1960).   
 
A related area of mathematics that is equally important is computational geometry, which is 
concerned with the development of algorithms and procedures that will provide solutions to 
geometric problems quickly and efficiently on computers.  There is now an annual symposium 
on computational geometry sponsored by the Association for Computing Machinery (ACM) and 
the special interest groups for Graphics, Automata and Computational Theory of that 
organization.  An advanced text on computational geometry is by Preparati and Shamos (1985).  
The authors begin their book by noting that the original motivation for geometry among the 
Greeks and Egyptians was the need to tax lands accurately and fairly and to construct buildings.  
Of course, these are still important motivations behind today’s cadastral and land-related GISs.  
Algorithm efficiency and speed are vital in GIS, because the operation being considered may 
have to be performed on tens or hundreds of thousands of lines or polygons.  An inefficient 
algorithm may slow down even the fastest computer.    
 
The formula for the intersection of two lines is the cornerstone of many point-in-polygon and 
polygon overlay routines.  And where would GIS be without them?  Point-in-polygon routines 
are extremely important in GIS operations. Frequently we need to know how many observations 
fall inside a polygon and how many fall outside.  The point-in-polygon operation is 
straightforward: a line is drawn vertically upward from the point in question.  The number of 
times that line crosses the boundary of the polygon being considered is recorded.  If that 
number is even, the point is outside the polygon; if it is odd, the point must be inside.  The 
algorithm is surprisingly robust and works for polygons that have weird and wonderful shapes' 
but there are many “special cases” (discussed below) requiring careful consideration.   
 
The polygon overlay operation involves finding the intersecting arcs of two different map 
coverages (Unit 34 of the NCGIA Core Curriculum).  Overlay operations are required for 
combining the properties of two or more map coverages and, thus, have been important in 
environmental impact studies since the days when such operations were performed 
mechanically and manually.  Thus, Ian McHarg (1969) used photographic overlay procedures to 
determine the ideal location for transportation corridors, among other things in his classic text 
Design with Nature.  Polygon overlay is important for buffering and windowing operations in a 
vector-based GIS.  Buffering operations allow the user to put a small polygon around a point, 
Iine, or area.  For example, a buffer might be placed around a river or a lake to protect such 
features from environmental damage that might result from logging.  A window might be used to 
take a look at what lies within the window.  Thus, the GIS user could find out the population 
characteristics of the people within the window.  Alternatively the window might be used as a 
moving spatial averaging or filtering device to generate a smoother surface. 
 



Before we leave this topic we should note that the above formulae solve the intersection 
problem, but only for simple situations.  In the real world there are a host of so-called "special 
cases," which arise with depressing frequency.  Thus, the formulae above assume lines of 
infinite length when we really only want to see if the lines cross somewhere on our map.  
Vertical lines that have an infinite slope and horizontal lines that have no slope may also cause 
complications.  These and other difficulties are addressed in an article by David Douglas that 
has been reprinted several times (see, for example, Douglas, 1990). 
 
3. The Gravity Model 
 

Iij = k [ (pi) (pj) / (dij )
2 ] 

 
The gravity model was used to predict traffic flows in early transportation models from the late 
1950s.  It is developed extensively in the writings of Wlliam Warntz and his students who 
pioneered the model (see Coffey, 1988, for a review of this work).  It states that the amount of 
interaction, I, between two places, i and j, is equal to some constant, k, multiplied by their 
population product divided by the distance between them squared.  The equation has been 
used in various forms.  Often the population terms are raised to a power, which is determined 
empirically using least squares regression procedures.  The exponent on distance may also be 
fitted empirically.  A full review of these types of models and their applications in the literature 
may be found in Taylor (1975.  The pi and pj terms may be used to represent other variables 
besides population that have an influence on interaction, and the distance term too may 
represent such surrogates for distance as time and cost.   
 
The model can be extended and manipulated to produce population potential models important 
in marketing and popularized in GIS packages such as SPANS, now owned by PCI, 
Incorporated, Richmond Hill, Ontario, Canada. The SPANS package has been used by such 
firms as Miracle Mart, Ontario, to advise on new supermarket locations.  In such studies, areas 
of high population potential are important indicators of where to place a new store. 
 
4. The Entropy Maximizing Model 
 

Tij = ( Ai * Oi * Bj * Dj ) / e
(b * cij) 

 
The equation above, in which Tij is the expected or most likely distribution of trips between 
transportation zone i and transportation zone j, was the basis of the entropy maximizing models 
developed in the late 1960s. The models provided statistical respectability for the gravity model.  
0i and Dj are the number of workers in the origin zone and number of jobs in the destination 
zone, respectively; Ai and Bj are weights; e is the irrational number 2.718...; b measures the 
friction of distance; and c is the cost of travel.  Entropy maximizing models have appeared in a 
variety of forms, including the so-called singly constrained shopping models and the doubly 
constrained journey-to-work models.  They are discussed in great detail in Wilson and Kirkby 
(1980).  In fact, Wilson first introduced these models to geographers, planners, and GIS 
analysts.  A gentler introduction is provided by Gould (1984). 
 
5. Projection Formulae 
 

X = R ( l-10 ) 
Y = R ln tan [ ( p / 4 ) + ( f / 2 ) ] 

 



Fifth on the list of spatial formulae and those that explicitly incorporate distance are formulae for 
converting spherical coordinates from Earth's surface into the two-dimensional X and Y 
coordinates of the Cartesian plane. There are many of these formulae— one or more formulae 
for each of the dozens of map projections now commonly used in GIS.  In the equations above, 
I and f are longitude and latitude, respectively, and X and Y are the standard Cartesian 
coordinates.  R is the radius of the sphere, and l0 is the central meridian with all angles 
measured in radians.  Finally, p is the mathematical number pi.  This elegant formula (from 
Snyder, 1987) for the oldest of all standard map projections, Mercator's, has been used to 
produce maps of the planetary surface of most of Earth's nearest neighbors (Snyder, 1987).   
 
Many of the large, expensive GISs allow users to convert to Cartesian coordinates from any of a 
large number of projections (in addition to Snyder, 1987, formulae for these projections are 
discussed in Richardus and Adler, 1972, and Pearson, 1990).  There are some excellent 
standalone packages that carry out vast numbers of these transformations.  Perhaps one of the 
most efficient and effective of these packages is The Geographic Calculator from Blue Marble 
Geographics, Gardiner, Maine (Waters, 1994a). 
 
6. Trend Surface Models 
 
The formula for a straight line in Cartesian space is also the formula for the common regression 
line, and that regression equation can be extended easily into two independent dimensions to 
produce an interpolated trend across space: 
 

Y = b0 + b1 X1 + b2 X2 + e 
 
The equation above is a first-order polynomial with two independent variables.  Notation for this 
model varies, but here I follow that given in Davis (1973, 1986).  In the equation, Y is the 
iependent variable whose value we wish to predict.  X1 and X2 are the independent variables, 
and in this model they represent location.  The final term, e, is the error or residual term.  If the 
dependent variable is elevation (although it does not have to be) and the two independent 
variables are eastings and northings, respectively, our trend surface, regression equation 
provides a linear, interpolated surface portraying the trend in elevation.   
 
From this simple surface we can easily move to higher order surfaces that allow us to model 
more complex relief.  The equation as presented only has the X1 and X2 terms raised to their 
first power, so it produces a surface with no inflections— it is a plane that may or may not be 
tilted.  If we add higher order powers of X1 and X2 and terms which represent combinations of 
their cross-products (e.g., X1X2 and X1

2 X2), we can then create more complex models of our 
interpolated surface.  Indeed, the number of inflexions or bends in the surface is always one 
less than the highest order of the X1 and X2 powers we use in the equation.  Complete details of 
all of these equations and the mathematics behind them, as well as computer programs to carry 
out the computations, are provided in Davis (1973) and Mather (1976).   
 
To the above equation we can also add another independent variable, X3, and plunge into the 
third dimension.  So this is a powerful formula indeed.  Three-dimensional trend surfaces are 
difficult to visualize and impossible to draw on a two-dimensional piece of paper or on a flat 
computer screen.  But we can draw them one slice at a time or use some of the visualization 
techniques discussed in Rosenblum, et al. (1994) to get an impression of how a variable 
changes over three dimensions.   
 



The error term or residual is important and allows us to see how good our interpolated surface 
is.  Thus, we can use the GIS to produce a map of our model, the trend surface, and we also 
can use it to produce a map of the residuals or errors to show where the model fails to produce 
a good fit with reality.   
 
With just one independent variable in the above equation we can model how our dependent 
variable, for example economic rent, changes over distance, and we have the classic bid rent 
line— Von Thunen's model flMilson and Kirkby, 1980). 
 
7. Distance Weighted Averages 
 
Distance weighted averages are like spatial moving averages.  They are important in surface 
interpolation routines and in attempts to smooth a surface and to increase the signal-to-noise 
ratio of whatever is being portrayed.  The equation is simple and straightforward in its 
unadorned version, but the beauty of the formula is that it is possible to include all sorts of ad 
hoc adjustments. 
 

Yk = SUM (Yi / Dik) / SUM (1 / Dik) 
 
This equation simply states that the estimated value at Yk is given by taking each of the i points 
and dividing by the distance between each of the i points and point k, which is the point being 
estimated.  These values are summed for however many points are used (4, 6, and 8 points are 
common).  The sum then is divided by the sum of the reciprocals of all the distances.  Chapter 3 
in Harbaugh, Doveton and Davis (1977) discusses the effect of using different numbers of 
points, different distance weighting procedures and other variations on this generic version of 
the equation.  The equation has been used extensively in the SURFACE II and III series of 
spatial interpolation programs (Sampson, 1978, 1994). 
 
8. Afflne and Curvilinear Transformations 
 
Closely related to the ideas expressed in spatial formula number 5 above and to the equation 
used in spatial formula number 6 above is the idea of an affine transformation.  Transformations 
are required when we wish to register different sets of coordinates for information from the same 
mapped area, but the coordinates come from a variety of maps that use different projections or 
coordinate grids.  Such transformations come in two types: affine transformations that keep 
parallel lines parallel and curvilinear transformations in which that is not necessarily the case. 
 
Affine transformations include translations (where the origin of the system is moved), scalings 
(where the scale of the map is changed), rotaions (where the map is rotated around the origin), 
and reflections (where a mirror image of the map is produced).  These transformations are the 
bread-and-butter of a host of algorithms in computer graphics.  Foley and Van Dam (1934) 
provide an exhaustive account together with computer pseudo-code for these operations.  A 
gentler introduction, along with BASIC programs and code, is given by Myers (1982).  The four 
operations are defined in the following equations: 
 

Translation: 
  U = X - a 
  V = Y - b 

Scaling: 
  U=c X 
  V=d Y 

Rotation: 
  U = X cos(alpha) + Y sin(alpha) 
  V = -X sin(alpha) + Y cos(alpha) 

Reflection (about the X axis): 
  U = X 
  V = f - Y 

Where, 



 U and V are the new transformed coordinates, 

 X and Y are the original coordinates, 

 a and b represent the number of units the Y and X axes are shifted, 

 c and d represent the scale change for the X and Y coordinates, 

 alpha is the angle of rotation measured anticlockwise, and 

 f is the maximum value on the Y axis. 
 

The transformations have several specific applications.  For example, a reflection is needed to 
convert from a Cartesian coordinate system (in which the origin of the system is in the bottom 
left-hand corner and Y increases as we move up the map) to a raster display system, such as a 
line printer or a video monitor (in which the origin is in the top left-hand corner and Y increases 
as we move down the map).  A series of these transformations (a translation, two rotations, and 
a reflection, respectively) also are needed to transform three-dimensional world coordinates into 
two-dimensional screen or map coordinates (see Myers, 1982).   
 
One method that combines these transformations is to use two multiple regression equations of 
the following form: 
 

U = b1 + b2X + b3Y 
V = b4 + b5X + b6Y 

 
These equations are of the same form as the first-order polynomial used in the trend surface.  U 
and V and X and Y are defined as before, but b1-b6 are constants and coefficients that could be 
fitted using a multiple regression program, one run for each equation.  Thus, a GIS analyst 
would have a series of X and Y coordinates and enter them as independent variables into the 
multiple regression program.  In the first run the U coordinates from the second map would 
represent the dependent variable.  Thus, the multiple regression program would yield the b1,b2, 
and b3 coefficients for the first equation.  A second run of the program using the V coordinates 
from the second map would allow the remaining b4, b5, and b6 coefficients to be found.  
Advanced treatments of affine geometry may be found in many textbooks (see, for example, 
Snapper and Troyer, 1971).   
 
Curvilinear transformations involve the use of higher order polynomials such as the following: 
 

U = b1 + b2X + b3Y + b4X
2 + b5Y

2 + b6XY 
V = b7 + b8X + b9Y + b10X

2 + b11Y
2 + b12XY 

 
This is a second-order polynomial, but more complex models might be used.  Again a good 
discussion is found in Davis (1986).  The whole topic of transformations is discussed in 
Goodchild (1984). 
 
9. Estimating Slope and Aspect 
 
A local trend surface equation can be calculated using a 2 by 2 or 3 by 3 window in a digital 
elevation model (DEM) from a raster GIS.  Once the equation has been determined (either by 
the usual least squares method or using the simplified formulae found in Unit 38 of the NCGIA 
Core Curriculum) and put in the form shown in spatial formula Number 6 above, we can 
calculate the landscape's useful properties, such as slope and aspect.  Using the same notation 



as in the trend surface equation above, these properties would be found by the following 
equations: 
 

Slope = ( b1
2 + b2

2 ) 1/2 
Aspect = tan-l (b2 / b1) 

 
The first equation states that slope is equal to the square root of the sum of the squares of the 
b1 and b2 coefficients from the trend surface equation.  These properties represent just two from 
a large number of geo-morphometric properties that can be calculated from the DEM.  The best 
discussion of this is found in articles by Evans (1990) and Pike (1988). 
 
10. Fractals and Determining the Fractal Dimension 
 
Fractals stem from a branch of mathematics that was popularized by Mandelbrot (1977, 1982).  
A popular treatment of Mandelbrot and his work is provided by Gleick (1987).  Fractals have 
many uses, including shape measurements, evaluating the degree of convolution of two-
dimensional shapes (hence they help with error measurements), evaluating the roughness of 
surfaces, and other generalization such as line operations.  They can be used for data 
compression, and Barnsley (Chapter 3, 1988) discusses their relationship to affine 
transformations (see spatial formula number 8 above).  Geographical treatments are contained 
in Goodchild and Mark (1987) and Batty and Longley (1994).   
 
Here I provide a simple equation for determining the fractal dimension of a line.  Other methods 
are discussed in Goodchild and Mark (1987). 
 

D = ( log (n2 / n1) ) / (log (s1 / s2) ) 
 
D is the fractal dimension; s1 is the step size of a pair of dividers used to measure the line the 
first time; s2 is the step size of a pair of dividers used to measure the line the second time; n1 is 
the number of steps used in the first measuring attempt; and n2 is the number of steps used in 
the second measuring attempt.  The formula relies on the fact that the line will appear to 
become longer as the step size is decreased (equivalent to an increase in the scale of the map), 
because now we use a more accurate measuring device.  The length increase is measured by 
the fractal dimension. 
 

ATTRIBUTE-RELATED FORMULAE 
 
1. The Normal Distribution or Bell Curve 
 
The normal distribution describes many types of objects, including the characteristics of people, 
naturally occurring phenomena, and errors.  The normal distribution is based on the principle 
that extreme values are rare.  Thus, short and tall people are uncommon, whereas people of an 
average height are common.  The bottom line is that most of us are pretty average.  The same 
is true of animal and plants.  And it is true of unbiased and nonsystematic errors as well.  As a 
result, small errors, for example in digitizing, tend to be more common than large errors, which 
is why we use statistics to describe our errors.   
 
For example, the root mean square is another name for the standard deviation, and in a normal 
distribution 68 percent of the values will be between the value of the mean (or average) minus 
one standard deviation and the value of the mean plus one standard deviation.  So by quoting 



the root mean square for our errors on an ARC/INFO tic coverage, for example, we can get a 
good idea of how serious the errors are.   
 
The normal distribution also has been shown to provide a good model for the rate at which 
people and organizations adopt innovations.  That idea figures prominently in the work of 
Rogers (1962).  The point is that initially it is difficult to persuade individuals to adopt something 
new because no one wants to take the risk.  But there are a few people who are true innovators.  
They adopt right away.  And then comes a larger group, the early adopters, followed by yet a 
larger group, the so called early majority. These groups are followed by the late majority and 
finally the laggards, the latter being a small group of die-hards who need to be convinced before 
they adopt.  The groups are divided on the basis of the standard deviation and the normal 
distribution.   
 
To illustrate, suppose it takes the average person 12 years to adopt and the standard deviation 
of the distribution is four years.  The innovators will adopt before four years have elapsed since 
the product's introduction. The early adopters will adopt between four years and eight years, 
and the early majority will adopt between eight and 12 years after the introduction.  The late 
majority adopt between 12 and 16 years after introduction.  Finally, the laggards adopt after the 
product has been on the market 16 years. Because we can use mathematical tables to deter- 
mine the percentage between the mean and one or more standard deviations from the mean, 
we know exactly how many people fall into the five categories: 2.5 percent, 13.5 percent, 34 
percent, 34 percent, and 16 percent, respectively.  Now what does that have to do with GIS? 
Jeffrey Lane and David Hartgen (1989) used the model to illustrate the rate at which state 
transportation departments adopt GIS and related technology. 
 
2. Standardizing Data 
 

Zi = ( Xi – Mean ) / Standard Deviation 
 
This simple formula allows us to standardize the values of different variables.  Thus, variables 
that have different variances because they are measured in different units are reduced to the 
same measuring stick.  The formula is important in cluster analysis in which a measure of 
dissimilarity is based on Euclidean distances (see spatial formula number 1).  If we did not 
standardize the variables, those with larger variances would exert a greater influence on the 
clustering process.  The formula is also useful when our variables are distributed normally, 
because the formula will convert all our values to standard normal deviates and then we can 
use tables of standard normal deviates to determine the probability of finding values between 
certain ranges, among other applications.  Many test statistics follow a normal distribution, so if 
we convert an observation to one of these test statistics and we know the mean and standard 
deviation of the sampling distribution of the test statistic, we can again convert it to a standard 
normal deviate and work out the probability of observing that particular value.  That is the basis 
of many inferential statistical tests (see Siegel and Castellan, 1988, for a more detailed 
discussion). 
 
3. The Chi-Square Statistic 
 
The chi-square statistic is used to compare observed with expected distributions.  It is ideal as a 
one-sample, goodness-of-fit test, because we can use it to see how our data are distributed.   
Thus, we can tell if a variable follows a normal or a poisson or some other distribution and, in 
the first two instances, that will allow us to take advantage of all the benefits described under 
attribute formulas numbers 1and 8.  The formula for chi-square is as follows: 



 
X2 = SUM  [ ( fo - fe )

2 / fe ] 
 
Here fo is the observed frequency, and fe is the expected frequency.  A thorough discussion of 
this statistic is given in Williams (1984).  Another useful introduction is provided by Siegel and 
Castellan (1988).  The use of formal hypothesis testing, and the scientific method is an 
approach that has been recommended by Waters (1994b) and Wellar and Wilson (1993). 
 
4. The Kappa Statistic 
 
Remote sensing and GIS often are lumped together.  Remote sensing is a cheap, effective way 
to acquire large amounts of data over extensive parts of the world covered by harsh or 
inaccessible terrain.  The journal Photogrammetric Engineering and Remote Sensing has a 
special section of each issue devoted to GIS and a complete issue devoted to GIS annually.  
The fact that remotely sensed data arrive as a grid of pixels makes them an ideal data source 
for a raster GIS.   
 
One of the most common activities in remote sensing is to classify the pixels into groups that 
represent, for example, vegetation classes.  Then we can compare the classified pixels to the 
vegetation that actually occurs on the ground in a number of test sites.  That information usually 
is represented in a matrix in which each row of the matrix represents the true classes and the 
columns represent the predicted classes that result from the use of a procedure such as a 
discriminant equation (see attribute formula number 4).  In the matrix the diagonal elements 
represent a successful classification, i.e., where the predicted value is the same as the true 
value.  Off-diagonal elements indicate a failure of the model.  The GIS analyst wants to know 
how good the model is, how much better than a random allocation of pixels to the elements in 
the matrix.  Even a random allocation would have some success.  So to see how much better 
the model is we use the kappa statistic: 
 

Kappa = ( d – q ) / ( N – q ) 
 
Here d is the number of cases in the diagonal cells, N is the total number of cases recorded in 
the matrix, and q is the number of cases expected in the diagonal cells (for a given matrix, q can 
be found by taking each row total multiplying by each column total and then dividing by N, an 
operation carried out for each row, and then all the row values are summed). 
 
Alternative formulae and associated significance tests and references for this useful, elegant 
statistic can be found in Siegel and Castellan (1988).  One of the most important properties to 
know about these statistics is their range.  Ideally a statistic such as kappa should have the 
same range for matrices of any size, and it simplifies things if this range is from 0 to 1.  Kappa 
conforms to these norms.  A matrix that shows a classification which is no better than chance 
will have a kappa value of 0, while a matrix with a perfect classification in which all the entries 
are on the diagonal will have a value of 1, because d and N will be the same number. 
 
5. Color Matching Systems 
 
Color is important in GIS.  It assists in visualization (Rosenblum, et al., 1994, and spatial 
formula number 6), and almost every GIS text includes the obligatory section of color images-
usually increasing the cost of the book by $5 to $10!  A detailed introduction to the use of color 
and computer systems is provided by Durrett (1987) and Waters (1989).  One of the problems 
with the use of color is that there are numerous ways of describing color.  Usually a three-



coordinate system is used.  Jain (i989) provides many formulae for moving from one coordinate 
system to another.  These formulae are usually matrix equations of the following format: 
 

[O] = [TM] [I] 
 
Here [O] is the 3-by-l output vector of three coordinates describing the characteristics of the 
color, [I] is the 3-by-1 input vector describing the color characteristics in the original system, and 
[TM] is a 3-by-3 transformation matrix.  A specific transformation matrix is required for each type 
of transformation. 
 
6. Optimization Models 
 

Maximize Z = aX1 + bX2 subject to constraints 
 
Here we have the basis for all the programming models in their various guises, including linear, 
integer, and dynamic programming, and the so-called transportation models.  They are also part 
of most location-allocation models, which now are incorporated into many of the most important 
GISs (see discussion of spatial formula number 1).  All of these models are important if we wish 
to use our GIS as an SDSS.  Extensive discussion of optimization models is provided in Wilson 
and Kirkby (1980).  See Densham (1991) for an SDSS discussion.   
 
7. The Rank Size Rule 
 

Pi = P1 / i 
 
This is a powerful formula with all sorts of statistical implications and applications.  A hint of the 
treasure trove awaiting the investigation of this formula is given by Simon (1991).  Basically, the 
formula says big things are less common than little things, and it describes log-normal 
distributions that are common in the data we store in GISs.  The formula has been used 
extensively in urban studies in which the size distribution of urban centers is expected to follow 
this distribution, and it also has been used in hydrocarbon exploration studies in which 
hydrocarbon reservoirs also are expected to follow the distribution.  In the former version of the 
model, Pi would represent the population of the town at rank i in the hierarchy, and Pl is the 
population of the largest town in the system.  Thus, the formula states that the second town in 
the urban system is half as big as the first, the third town is a third the size of the first, etc. 
 
8. The Poisson Distribution 
 

p(n) = (e-d) (dn) / n! 
 
Here d represents the density of the process, and p(n) is the probability of observing n points in 
a given interval of either time or space.  The formula has been used to evaluate the distribution 
of samples of points to see if the GIS provides adequate coverage when the data are spaced 
irregularly.  It also can be used to generate data for traffic simulation models in which vehicles 
arrive independently of each other, as well as many other situations. 
 
9. Classification and the F Statistic 
 

F = Within class variance / Between class variance 
 



So simple, so elegant, and yet it is the basis of most attempts to classify data in a GIS.  And 
classification is so fundamental to GIS (Davis, 1986) use in resource management using 
remotely sensed data.  Classification raises interesting philosophical and methodological issues.  
The former are detailed in Lakoff (1987), and the latter are addressed in Mather (1976) and 
Everitt (1993).  Procedures that depend on this statistic include cluster analysis, trend surface 
analysis, regression analysis, and discriminant analysis. 
 
10. The Discriminant Equation 
 
Discriminant analysis is used extensively in remote sensing and GIS. For example, an analyst 
might classify pixels from a digital image into vegetation classes using discriminant functions.  
Although part of the general linear model, which assumes the data are distributed normally, the 
technique is relatively robust for departures from such assumptions and is used frequently.  
Excellent accounts of its application are found in Mather (1976), Davis (1986), and Tabachnik 
and Fidell (1989).  The equation is similar to a multiple regression equation and is given by the 
following formula: 
 

DS = b0 + b1X1 + b2X2 + bnXn 
 
Here DS is the discriminant score, b0 is a constant, and b1 to bn are coefficients that are fitted 
empirically according to some criterion, such as maximizing the minimum difference among 
classes.  The equation can be written in a standardized form in which case the constant term 
drops out and the b1 to bn terms are replaced by standardized coefficients that indicate the 
relative importance of the variables in contributing to the discriminant function. 
 
Conclusion 
 
The formulae chosen here were selected for their elegance, simplicity, and generality, as well as 
their wide applicability and power.  They represent a host of approaches and analytical 
procedures that have proved fruitful in constructing GISs and in subsequent GIS analysis.  
There are many others, but these few provide a glimpse into the power of a GIS as a tool for 
spatial reasoning and spatial decision support. 
 
C 
 
This appendix originated in a column that appeared in G1S WORLD's November 1994 issue. 
That original, much abbreviated treatment asked readers for their input concerning what they 
felt to be formulae and equations deserving of inclusion in a more lengthy treatment.  Many 
readers responded to me by E-mail, and I am truly grateful to them for their suggestions.  These 
readers included Lee De Cola, U.S. Geological Survey, who suggested the Normal or Gaussian 
distribution.  I am still collecting ideas.  If you have suggestions, please E-mail them to me at 
nwaters@gmu.edu. 
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