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GIS Represents Spatial Patterns and Relationships — discusses the important differences 
among discrete mapping , continuous map surfaces and map analysis 
Statistically Compare Discrete Maps — discusses procedures for comparing discrete maps 
Statistically Compare Continuous Map Surfaces — discusses procedures for comparing 
continuous map surfaces 
Geographic Software Removes Guesswork from Map Similarity — discusses basic 
considerations and procedures for generating similarity maps  
Use Similarity to Identify Data Zones — describes level-slicing for classifying areas into zones 
containing a specified data pattern 
Use Statistics to Map Data Clusters — discusses clustering for partitioning an are into separate 
data groups 
Spatial Data Mining “Down on the Farm” — discusses process for moving from Whole-Field to 
Site-Specific management 
Spatial Data Mining Allows Users to Predict Maps — describes the basic concepts and 
procedures for deriving equations that can be used to derive prediction maps 
Stratify Maps to Make Better Predictions — illustrates a procedure for subdividing an area into 
smaller more homogenous groups prior to generating prediction equations 
 

Author’s Notes: The figures in this topic use MapCalcTM software.  An educational CD with online text, exercises 
and databases for “hands-on” experience in these and other grid-based analysis procedures is available for 
US$21.95 plus shipping and handling (www.farmgis.com/products/software/mapcalc/ ).   
 
<Click here> right-click to download a printer-friendly version of this topic (.pdf). 
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GIS Represents Spatial Patterns and 
Relationships    

(GeoWorld, April 1999, pg. 24-25)   
  (return to top of Topic)  

 

Many of the topics in this book have discussed the subtle (and often not so subtle) differences 

between mapping and map analysis.  Traditionally, mapping identifies distinct map features, or 

spatial objects, linked to aggregated tables that are visually interpreted for spatial relationships.  
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The thematic mapping and geo-query capabilities of this approach enable users to “see through” 

the complexity of spatial data and the barrage of associated tables. 

 

Map analysis, on the other hand, slogs around in the complexity of geographic space, treating it 

as a continuum of varying responses and utilizing map-ematical computations to uncover spatial 

relationships.  A major distinction between the two approaches lies in the extension of the 

traditional map elements of points, lines and areas to map surfaces—an old concept that has 

achieved practical reality with the advent of digital maps. 

 

Zones and Surfaces 
 

While much of the information in a GIS is discrete, such as the infrastructure of roads, buildings, 

and power lines, the focus of many applications extend to decision factors that widely vary 

throughout geographic space.  As a result, surface modeling plays a dominant role in site-specific 

management of geographically diffuse conditions. 

 

Map surfaces, also termed spatial gradients, often are characterized by grid-based data structures.  

In forming a surface, the traditional representation based on irregular polygons is replaced by a 

highly resolved matrix of grid cells superimposed over an area (top portion of figure 1). 

 

 
Figure 1. Comparison of zone (polygon) and surface (grid) representations for a continuous 

variable. 

 

The representation of the data range for the two approaches is radically different.  Consider the 

alternatives for characterizing phosphorous levels throughout a farmer’s field.  One approach, 

termed zone management, uses air photos and a farmer’s knowledge to subdivide the field into 

similar areas (gray levels depicted on the left side of figure 1).  Soil samples are randomly 

collected in the areas and the average phosphorous level is assigned to each zone.  These, plus 
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other soil data gathered for each of the zones are used to develop a fertilization program for the 

field. 

 

An alternative approach, termed site-specific management, systematically samples the field, then 

interpolates these data for a continuous map surface of phosphorous levels (right side of figure 

1).  First, note the similarities between the two representations—the generalized levels (data 

range) for the zones correspond fairly well with the map surface levels (the darkest zone tends to 

align with the highest levels, while the lightest zone contains the lowest levels). 

 

Now consider the differences between the two representations.  Note that the zone approach 

assumes a constant level (horizontal plane) of phosphorous within each zone (Zone#1(dark 

gray)= 55, Zone#2= 46 and Zone#3(light gray)= 42, whereas the surface shows a gradient of 

change across the field varying from 22 to 140).  Two important pieces of information are lost in 

the zone approach—the extreme high/low values and the geographic distribution of the variation.  

This “missing” information severely limits the potential for spatial analysis of the zone data.* 

 

Ok, you’re not a farmer, so what’s to worry?  If you think about it, the bulk of GIS data is 

zonal—average income by counties, dominant species by forest parcel, and total sales within 

market area are common examples.  However, in many instances the parsing into irregular 

polygons has minimal relationship to the actual geographic distribution of the data.  For example, 

knowing an average lead concentration in wells for a county is of minimal value if there are a lot 

of wells above the average and they are all concentrated in one area.  Or, two adjoining market 

areas might both seem mediocre, but all of their high sales happen along their shared boundary.  

In both cases the averaging within zones severely reduces the spatial information contained in 

the “raw” data. 

 

Surface Modeling 
 

There are two ways to establish map surfaces—continuous sampling and spatial analysis of a 

dispersed set samples.  By far the best way is to continuously sample and directly assign an 

actual measurement(s) to each grid cell.  Remote sensing data with a measurement for each pixel 

is good example of this data type. 
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Figure 2.  Geo-referenced map surfaces provide information about the unique combinations of 

data values occurring throughout an area. 
 

However, map surfaces often are derived by statistically estimating a value for each grid cell 

based on a set of scattered measurements.  For example, locations of a bank’s home equity loan 

accounts can be geo-coded by their street address.  Like “push-pins” stuck into a map on the 

wall, clusters of accounts form discernable patterns.  An account density surface is easily 

generated by successively stopping at each grid cell and counting the number of accounts within 

1/8
th

 of a mile.  In a similar fashion, an account value surface is generated by summing the 

account values within the radius.  These surfaces show the actual “pockets” (peaks and pits) of 

the bank’s customers.  By contrast, a zonal approach would simply assign the average 

number/value of accounts “falling into” predefined city neighborhoods, whether they actually 

matched the spatial patterns in the data or not. 

 

Surface Analysis 
 

The loss in spatial specificity for a map variable by generalizing into zones can be significant.  

However, the real kicker comes when you attempt to analyze the coincidence among maps.  

Figure 2 shows three geo-referenced surfaces for the farmer’s field—phosphorous, potassium 

and acidity (PH).  The pins depict four of the 1380 possible combinations of data for the field.  

By contrast, the zonal representation has only three possible combinations since it has just three 

distinct zones with averages attached. 

 

The assumption of the zone approach is that the coincidence of the averages is consistent 

throughout the entire map area.  If there is a lot of spatial dependency among the variables and 
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the zones happen to align with actual patterns in the data, this assumption isn’t bad.  However in 

reality this is rarely the case. 

 

 
Table 1.  Comparison of zone and surface data for selected locations. 

 
Consider the “shishkebab” of data values for the four pins shown in Table 1.  The first two pins 

are in Zone #1 so the assumption is that the levels of phosphorous= 55, potassium= 457 and PH= 

6.4 are the same for both locations (as they are for everywhere within Zone #1).  But the surface 

data for Pin #1 indicates a sizable difference from the averages—150% ([[140-55]/55]*100) for 

phosphorous, 28% for potassium and 8% for PH.   The differences are less for Pin #2 with 20%, 

2% and –2%, respectively.  Pins #3 and #4 are in different zones, but similar deviations from the 

averages are noted, with the greatest differences in phosphorous levels and the least in PH levels. 

 

While zones might be sufficient for general description and viewing of spatial data, surfaces are 

needed in most applications to discover spatial relationships.  As GIS technology evolves, the 

traditional thematic mapping and geo-query capabilities will be extended to data mining and 

knowledge discovery.  In this expanded role, map variables are used to relate subtle changes in 

one variable to those in others.  As a result, maps become an active ingredient in enlarging our 

understanding of things, not just a mechanism to “paint” existing non-spatial heuristics and 

science.  The first step along the path to tomorrow’s GIS is incorporating map surfaces and 

spatial analysis into our geographic psyche and science. 
________________ 

Author’s Note: a more detailed discussion of zones and surfaces is available online at www.innovativegis.com/basis, 
select Column Supplements. 

 
 

Statistically Compare Discrete Maps   

(GeoWorld, July 2006, pg. 16-17) 
(return to top of Topic) 

 

One of the most fundamental techniques in map analysis is the comparison of two maps.  

Questions like “…how different are they?”, “…how are they different?” and “…where are they 

different?” immediately spring to mind.  Quantitative answers are needed because visual 

comparison cannot fully consider all of the spatial detail in an objective manner. 

The two maps shown in figure 12-1 identify crop yield for successive seasons (1997 and 1998) 

on the central-pivot cornfield.  Note that the maps have a common legend from 0 to 300 bushels 

per acre.  How different are the maps?  How are they different?  And where are they different? 
While your eyes flit back and forth in an attempt to visually compare the maps, the computer 

approaches the problem much more methodically.   
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Figure 1. Discrete yield maps for consecutive years. 

 

In this Precision Agriculture application, thousands of point values for yield are collected “on-

the-fly” as a GPS-enabled harvester moves through a field.  These data are summarized for each 

analysis grid cell representing the field at a chosen resolution (3289 50-foot cells in this 

example).  The dominant yield class within each cell is assigned its interval value (values 1= low 

yield of 0-60bu/ac through 5= high yield of 240-300 corresponding to the color ranges in the 

map display).   

 

The next step, as shown in figure 2, combines the two maps into a single map indicating the 

“joint condition” for both years.  Since the two maps have an identical grid configuration, the 

computer simply retrieves the two class assignments for a grid location, and then converts them 

to a single number by computing the “first value times ten plus the second value” to form a two-

digit code.  In the example shown in the figure, the value “forty-three” is interpreted as class 4 in 

the first year but decreasing to class 3 in the next year.     

 

 
Figure 2.  Coincidence map identifying the joint conditions for both years. 
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The final step sums up the changes to generate the Coincidence Table shown in figure 3.  The 

columns and rows in the table represent the class assignments on the 1997 and 1998 yield maps, 

respectively.  The body of the table reports the number of cells for each joint condition.  For 

example, column 4 and row 3 notes that there are 905 occurrences where the yield class slipped 

from level four (180-240bu/ac) to level three (120-180bu/ac).   

 

The off-diagonal entries indicate changes between the two maps—the values indicate the relative 

importance of the change.  For example, the 905 count for the “four-three” change is the largest 

and therefore identifies the most frequently occurring change in the field.  The 0 statistic for the 

“four-one” combination indicates that level four never slipped all the way to level 1.  Since the 

sum of the values above the diagonal (1224) is much larger than those below the diagonal (215), 

it clearly indicates that the downgrading of the yield classes dominates the change occurring in 

the field. 

 

 
Figure 3.  Coincidence summary table. 

 

The diagonal entries summarize the agreement between the two maps.  Generally speaking, the 

maps are very different as only a little more than half the field didn’t change (40+144+1648+18= 

1850/3289= 56.25%).  The greatest portion of the field that didn’t change occurs for yield class 3 

(“three-three” with 1648 out of 1895 cells).  The greatest difference occurred for class 4 (“four-

four” with only 18/3289= 1.89% that didn’t change).  The statistics in the table are simply 

summaries of the detailed spatial patterns of change depicted in the coincidence map shown in 

figure 2.   

 

That’s a lot more meat in the answers to the basic map comparison questions (how much, how 

and where) than visceral viewing and eye flickering impression can do.  Next month’s column 

focuses on even more precise procedures for quantifying differences using two continuous map 

surfaces. 

 

 

Statistically Compare Continuous 
Map Surfaces   

(GeoWorld, September, 2006, pg. 24-25) 
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(return to top of Topic) 
 

Contour maps are the most frequently used and familiar form of presenting precision agriculture 

data.  The two 3D perspective-plots in the top of figure 1 show the color-coded ranges of yield 

(0-60, 60-120, etc. bushels per acre) and are identical to the discrete maps discussed in the 

previous section.  The color-coding of the contours is draped for cross-reference onto the 

continuous 3D surface of the actual yield data. 

 

 
Figure 1.  3-D Views of yield surfaces for consecutive years. 

 

Note the “spikes and pits” in the surfaces that graphically portray the variance in yield data for 

each of the contour intervals.  While discrete map comparison identifies shifts in broadly defined 

yield classes, continuous surface comparison identifies the precise difference at each location. 

 

For example, a yield value of 179 bushels on one map and 121 on the other are both assigned to 

the third contour interval (120 to180; yellow).  A discrete map comparison would suggest that no 

change in yield occurred for the location because the contour interval remained constant.  A 

continuous surface comparison, would report a fairly significant 58-bushel decline.  

 
Figure 2 shows the calculations using the actual values for the same location highlighted in the 

previous section’s discussion.  The discrete map comparison reported a decline from yield level 

4 (180 to 240) to level 3 (120 to 180). 

 

The MapCalc command, “Compute Yield_98 minus Yield_97 for Difference” generates the 

difference surface.  If the simple “map algebra” equation is expanded to “Compute (((Yield_98 
minus Yield_97) / Yield_97) *100)” a percent difference surface would be generated.  Keep in 

mind that a map surface is merely a spatially organized set of numbers that awaits detailed 

analysis then transformation to generalized displays and reports for human consumption. 
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Figure 2.  A difference surface identifies the actual change in crop yield at each map location. 

 

In figure 2, note that the wildest differences (side-by-side green spikes and red pits) occur at the 

field edges and along the access road—from an increase of 165 bushels to a decrease of 191 

bushels between the two harvests.  However, notice that most of the change is about a 25 bushel 

decline (mean= -22.6; median= -26.3) as identified in the summary table shown in figure 12-6. 

 

The continuous surface comparison more precisely reports the change as –38.1 bushels.  The 

differences for other 3,289 grid cells are computed to derive a Difference Surface that tracks the 

subtle variations in the spatial pattern of the changes in yield.   

 

The histogram of the yield differences in the figure shows the numerical distribution of the 

difference data.  Note that it is normally distributed and that the bulk of the data is centered about 

a 25 bushel decline.  The vertical lines in the histogram locate the contour intervals used in the 

2D display of the difference map in the left portion of figure 3. 

 

The detailed legend links the color-coding of the map intervals to some basic frequency 

statistics.  The example location with the calculated decline of –38.1 is assigned to the –39 to –

30 contour range and is displayed as a mid-range red tone.  The display uses an Equal Count 
method with seven intervals, each representing approximately 15% of the field.  Green is locked 

for the only interval of increased yield.  The decreased yield intervals form a color-gradient from 

yellow to red.  All in all, surface map comparison provides more information in a more effective 

manner discrete map comparison.  Both approaches, however, are far superior to simply viewing 

a couple yield maps side-by-side and guessing at the magnitude and pattern of the changes.  
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Figure 3.  A 2-D map and statistics summarize the differences in crop yield between two periods. 
 

The ability to quantitatively evaluate continuous surfaces is fundamental to precision agriculture.  

A difference surface is one of the simplest and most intuitive forms.  While the math and stat of 

other procedures are fairly basic, the initial thought of “you can’t do that to a map” is usually a 

reflection of our non-spatial statistics and paper-map legacies.  In most instances, precision 

agriculture is simply an extension of current research and management practices from a few 

sample plots to extensive mapped data sets.  The remainder of this case study investigates many 

of these extensions. 

 

 

Geographic Software Removes 
Guesswork from Map Similarity 

(GeoWorld, October 2001, pg. 24-25) 
(return to top of Topic) 

 

How often have you seen a GIS presenter “lasso” a portion of a map with a laser pointer and 

boldly state “See how similar this area is to the locations over here and here” as the pointer 

rapidly moves about the map.  More often than not, there is a series of side-by-side maps serving 

as the background scenery for the laser show.     

 

But just how similar is one location to another?  Really similar, or just a little similar?  And just 

how dissimilar are all of the other areas?  While visceral analysis can identify broad relationships 

it takes a quantitative map analysis approach to handle the detailed scrutiny demanded in site-

specific management. 

 

Consider the three maps shown in figure 1— what areas identify similar patterns?  If you focus 

your attention on a location in the southeastern portion how similar are all of the other locations? 

The answers to these questions are much too complex for visual analysis and certainly beyond 

the geo-query and display procedures of standard desktop mapping packages.  While the data in 

the example shows the relative amounts of phosphorous, potassium and nitrogen throughout a 
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cornfield, it could as easily be demographic data representing income, education and property 

values.  Or sales data tracking three different products.  Or public health maps representing 

different disease incidences.  Or crime statistics representing different types of felonies or 

misdemeanors.   

 
Figure 1.  Map surfaces identifying the spatial distribution of P,K and N throughout a field. 

 

Regardless of the data and application arena, the map-ematical procedure for assessing similarity 

is the same.  In visual analysis you move your eye among the maps to summarize the color 

assignments at different locations.  The difficulty in this approach is two-fold— remembering the 

color patterns and calculating the difference.  The map analysis procedure does the same thing 

except it uses map values in place of the colors.  In addition, the computer doesn’t tire as easily 

and completes the comparison for all of the locations throughout the map window (3289 in this 

example) in a couple seconds. 

 

The upper-left portion of figure 2 illustrates capturing the data patterns of two locations for 

comparison.  The “data spear” at map location 45column, 18row identifies that the P-level as 

11.0ppm, the K-level as 177.0 and N-level as 32.9.  This step is analogous to your eye noting a 

color pattern of burnt-red, dark-orange and light-green.  The other location for comparison (32c, 

62r) has a data pattern of P= 53.2, K= 412.0 and N= 27.9.  Or as your eye sees it, a color pattern 

of dark-green, dark-green and yellow.   
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Figure 2.  Conceptually linking geographic space and data space. 

 

The right side of figure 2 conceptually depicts how the computer calculates a similarity value for 

the two response patterns.  The realization that mapped data can be expressed in both geographic 

space and data space is key to understanding the procedure.   

 

Geographic space uses coordinates, such latitude and longitude, to locate things in the real 

world—such as the southeast and extreme north points identified in the example.  The 

geographic expression of the complete set of measurements depicts their spatial distribution in 

familiar map form. 

 

Data space, on the other hand, is a bit less familiar.  While you can’t stroll through data space 

you can conceptualize it as a box with a bunch of balls floating within it.  In the example, the 

three axes defining the extent of the box correspond to the P, K and N levels measured in the 

field.  The floating balls represent grid cells defining the geographic space—one for each grid 

cell.  The coordinates locating the floating balls extend from the data axes—11.0, 177.0 and 32.9 

for the comparison point.  The other point has considerably higher values in P and K with 

slightly lower N (53.2, 412.0, 27.9) so it plots at a different location in data space.   

 

The bottom line is that the position of any point in data space identifies its numerical pattern—

low, low, low is in the back-left corner, while high, high, high is in the upper-right corner.  

Points that plot in data space close to each other are similar; those that plot farther away are less 

similar.   

 

In the example, the floating ball closest to you is the farthest one (least similar) from the 

comparison point.  This distance becomes the reference for “most different” and sets the bottom 

value of the similarity scale (0%).  A point with an identical data pattern plots at exactly the 
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same position in data space resulting in a data distance of 0 that equates to the highest similarity 

value (100%). 

 

 
Figure 3.  A similarity map identifying how related locations are to a given point. 

 

The similarity map shown in figure 3 applies the similarity scale to the data distances calculated 

between the comparison point and all of the other points in data space.  The green tones indicate 

field locations with fairly similar P, K and N levels.  The red tones indicate dissimilar areas.  It is 

interesting to note that most of the very similar locations are in the western portion of the field. 

A similarity map can be an invaluable tool for investigating spatial patterns in any complex set of 

mapped data.  While humans are unable to conceptualize more than three variables (the data 

space box), a similarity index can handle any number of input maps.  The different layers can be 

weighted to reflect relative importance in determining overall similarity. 

 

In effect, a similarity map replaces a lot of laser-pointer waving and subjective suggestions of 

similar/dissimilar areas with a concrete, quantitative measurement at each map location.  The 

technique moves map analysis well beyond the old “I’d never have seen, it if I hadn’t believe it” 

mode of cartographic interpretation. 

 

 

Use Similarity to Identify Data Zones  

(GeoWorld, November 2001, pg. 24-25) 
(return to top of Topic) 

 

The previous discussion introduced the concept of “data distance” as a means to measure 

similarity within a map.  One simply mouse-clicks a location and all of the other locations are 

assigned a similarity value from 0 (zero percent similar) to 100 (identical) based on a set of 

specified maps.  The statistic replaces difficult visual interpretation of map displays with an 

exact quantitative measure at each location. 

 

An extension to the technique allows you to circle an area then compute similarity based on the 

typical data pattern within the delineated area.  In this instance, the computer calculates the 

average value within the area for each map layer to establish the comparison data pattern, and 
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then determines the normalized data distance for each map location.  The result is a map showing 

how similar things are to the area of interest.  

 

 
Figure 1.  Identifying areas of unusually high measurements. 

 

In the same way, a marketer could use an existing sales map to identify areas of unusually high 

sales for a product, then generate a map of similarity based on demographic data.  The result will 

identify locations with a similar demographic pattern elsewhere in the city.  Or a forester might 

identify areas with similar terrain and soil conditions to those of a rare vegetation type to identify 

other areas to encourage regeneration.  

 

The link between Geographic Space and Data Space is key.  As shown in figure 1, spatial data 

can be viewed as a map or a histogram.  While a map shows us “where is what,” a histogram 

summarizes “how often” measurements occur (regardless where they occur). 

The top-left portion of the figure shows a 2D/3D map display of the relative amount of 

phosphorous (P) throughout a farmer’s field.  Note the spikes of high measurements along the 

edge of the field, with a particularly big spike in the north portion. 

 

The histogram to the right of the map view forms a different perspective of the data.  Rather than 

positioning the measurements in geographic space it summarizes their relative frequency of 

occurrence in data space.  The X-axis of the graph corresponds to the Z-axis of the map—

amount of phosphorous.  In this case, the spikes in the graph indicate measurements that occur 

more frequently.  Note the high occurrence of phosphorous around 11ppm.   
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Figure 2.  Identifying joint coincidence in both data and geographic space. 

 

Now to put the geographic-data space link to use.  The shaded area in the histogram view 

identifies measurements that are unusually high—more than one standard deviation above the 

mean.  This statistical cutoff is used to isolate locations of high measurements as shown in the 

map on the right.  The procedure is repeated for the potassium (K) map surface to identify its 

locations of unusually high measurements. 

 

Figure 2 illustrates combining the P and K data to locate areas in the field that have high 

measurements in both.  The graphic on the left is termed a scatter diagram or plot.  It graphically 

summarizes the joint occurrence of both sets of mapped data.   

 

Each ball in the scatter plot schematically represents a location in the field.  Its position in the 

plot identifies the P and K measurements at that location.  The balls plotting in the shaded area of 

the diagram identify field locations that have both high P and high K.  The upper-left partition 

identifies joint conditions in which neither P nor K are high.  The off-diagonal partitions in the 

scatter plot identify locations that are high in one but not the other. 

 

The aligned maps on the right show the geographic solution for areas that are high in both of the 

soil nutrients.  A simple map-ematical way to generate the solution is to assign 1 to all locations 

of high measurements in the P and K map layers (bight green).  Zero is assigned to locations that 

aren’t high (light gray).  When the two binary maps (0/1) are multiplied a zero on either map 

computes to zero.  Locations that are high on both maps equate to 1 (1*1 = 1).  In effect, this 

“level-slice” technique maps any data pattern you specify… just assign 1 to the data interval of 

interest for each map variable.    

 

Figure 3 depicts level slicing for areas that are unusually high in P, K and N (nitrogen).  In this 

instance the data pattern coincidence is a box in 3-dimensional scatter plot space.  
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Figure 3.  Level-slice classification using three map variables. 

 

However a map-ematical trick was employed to get the map solution shown in the figure.  On the 

individual maps, high areas were set to P=1, K= 2 and N=4, then the maps were added together.   

The result is a range of coincidence values from zero (0+0+0= 0; gray= no high areas) to seven 

(1+2+4= 7; red= high P, high K, high N).  The map values in between identify the map layers 

having high measurements.  For example, the yellow areas with the value 3 have high P and K 

but not N (1+2+0= 3).  If four or more maps are combined, the areas of interest are assigned 

increasing binary progression values (…8, 16, 32, etc)—the sum will always uniquely identify 

the combinations. 

 

While level-slicing isn’t a very sophisticated classifier, it does illustrate the useful link between 

data space and geographic space.  This fundamental concept forms the basis for most 

geostatistical analysis… including map clustering and regression to be tackled in the next couple 

of columns. 

 

 

Use Statistics to Map Data Clusters  

(GeoWorld, December 2001, pg. 24-25) 
(return to top of Topic) 

 

The last couple of sections have focused on analyzing data similarities within a stack of maps.   

The first technique, termed Map Similarity, generates a map showing how similar all other areas 

are to a selected location.  A user simply clicks on an area and all other map locations are 
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assigned a value from 0 (0% similar—as different as you can get) to 100 (100% similar—exactly 

the same data pattern). 

The other technique, Level Slicing, enables a user to specify a data range of interest for each map 

in the stack then generates a map identifying the locations meeting the criteria.  Level Slice 

output identifies combinations of the criteria met—from only one criterion (and which one it is), 

to those locations where all of the criteria are met. 

 

While both of these techniques are useful in examining spatial relationships, they require the user 

to specify data analysis parameters.  But what if you don’t know what Level Slice intervals to 

use or which locations in the field warrant Map Similarity investigation?  Can the computer on 

its own identify groups of similar data?  How would such a classification work?  How well 

would it work? 

 

 
Figure 1.  Examples of Map Clustering. 

 

Figure 1 shows some examples derived from Map Clustering.  The “floating” maps on the left 

show the input map stack used for the cluster analysis.  The maps are the same P, K, and N maps 

identifying phosphorous, potassium and nitrogen levels throughout a cornfield that were used for 

the examples in the previous topics.  However, keep in mind that the input maps could be crime, 

pollution or sales data—any set of application related data.  Clustering simply looks at the 

numerical pattern at each map location and ‘sorts” them into discrete groups. 

 

The map in the center of the figure shows the results of classifying the P, K and N map stack into 

two clusters.  The data pattern for each cell location is used to partition the field into two groups 

that are 1) as different as possible between groups and 2) as similar as possible within a group.  

If all went well, any other division of the field into two groups would be not as good at balancing 

the two criteria.    

 

The two smaller maps at the right show the division of the data set into three and four clusters.  

In all three of the cluster maps red is assigned to the cluster with relatively low responses and 

green to the one with relatively high responses.   Note the encroachment on these marginal 

groups by the added clusters that are formed by data patterns at the boundaries. 
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The mechanics of generating cluster maps are quite simple.  Simply specify the input maps and 

the number of clusters you want then miraculously a map appears with discrete data groupings.  

So how is this miracle performed?  What happens inside cluster’s black box? 

 

 
Figure 2.  Data patterns for map locations are depicted as floating balls in data space. 

 

The schematic in figure 2 depicts the process.  The floating balls identify the data patterns for 

each map location (geographic space) plotted against the P, K and N axes (data space).  For 

example, the large ball appearing closest to you depicts a location with high values on all three 

input maps.  The tiny ball in the opposite corner (near the plot origin) depicts a map location 

with small map values.  It seems sensible that these two extreme responses would belong to 

different data groupings. 

 

The specific algorithm used in clustering was discussed in a previous Beyond Mapping column 

(see “Identifying Data Patterns,” Topic 7, Map Analysis).  However for this discussion, it 

suffices to note that “data distances” between the floating balls are used to identify cluster 

membership—groups of balls that are relatively far from other groups and relatively close to 

each other form separate data clusters.  In this example, the red balls identify relatively low 

responses while green ones have relatively high responses.  The geographic pattern of the 

classification is shown in the map at the lower right of the figure. 

 

Identifying groups of neighboring data points to form clusters can be tricky business.  Ideally, 

the clusters will form distinct “clouds” in data space.  But that rarely happens and the clustering 

technique has to enforce decision rules that slice a boundary between nearly identical responses.  

Also, extended techniques can be used to impose weighted boundaries based on data trends or 
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expert knowledge.  Treatment of categorical data and leveraging spatial autocorrelation are other 

considerations. 

 

  
Figure 3.  Clustering results can be roughly evaluated using basic statistics. 

 

So how do know if the clustering results are acceptable?  Most statisticians would respond, “you 

can’t tell for sure.”  While there are some elaborate procedures focusing on the cluster 

assignments at the boundaries, the most frequently used benchmarks use standard statistical 

indices. 

 

Figure 3 shows the performance table and box-and-whisker plots for the map containing two 

clusters.  The average, standard deviation, minimum and maximum values within each cluster 

are calculated.  Ideally the averages would be radically different and the standard deviations 

small—large difference between groups and small differences within groups. 

 

Box-and-whisker plots enable us to visualize these differences.  The box is centered on the 

average (position) and extends above and below one standard deviation (width) with the 

whiskers drawn to the minimum and maximum values to provide a visual sense of the data 

range.  When the diagrams for the two clusters overlap, as they do for the phosphorous 

responses, it tells us that the clusters aren’t very distinct along this axis.   The separation between 

the boxes for the K and N axes suggests greater distinction between the clusters.  Given the 

results a practical GIS’er would likely accept the classification results… and statisticians 

hopefully will accept in advance my apologies for such a conceptual and terse treatment of a 

complex topic. 

 

 



____________________________ 

From the online book Beyond Mapping III by Joseph K. Berry.  All rights reserved.  Permission to copy for educational use is granted.   
 

Page  20 
 

Spatial Data Mining “Down on the Farm”  

(GeoWorld, August 2006, pg. 20-21) 
(return to top of Topic) 

 

Until the 1990s, maps played a minor role in production agriculture. Most soil maps and 

topographic sheets were too generalized for use at the farm level. As a result, the principle of 

Whole-Field Management based on broad averages of field data, dominated management 

actions. Weigh-wagon and grain elevator measurements established a field's overall yield 

performance, and soil sampling determined the typical/average nutrient levels for a field. 

Farmers used such data to determine best overall seed varieties, fertilization rates and a bushel of 

other decisions that all treated an entire field as uniform within its boundaries. 

 

Precision Agriculture, on the other hand, recognizes the variability within a field and involves 

doing the right thing, in the right way, at the right place and time—Site-Specific Management. 
The approach involves assessing and reacting to field variability by tailoring management 

actions, such as fertilization levels, seeding rates and selection variety, to match changing field 

conditions. It assumes that managing field variability leads to cost savings and production 

increases as well as improved stewardship and environmental benefits. 

 

Figure 1 outlines the major steps in transforming spatial data and derived relationships into on-

the-fly variable rate maps that puts a little here, more over there and none at other places in the 

field.  The prescription maps are derived by applying spatial data mining techniques to uncover 

the relationship between crop production and management variables, such as fertility 

applications of phosphorous, potassium and nitrogen (P, K and N). 

 

 
Figure 1.  Relationships among yield and field nutrient levels are analyzed to derive a 

prescription map that identifies site-specific adjustments to nutrient application. 
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First a detailed map of crop yield is constructed by on-the-fly yield monitoring as a harvester 

moves through a field.  A record of the yield volume and GPS coordinates is made every second 

(thousands per field) and then converted into a continuous map surface.  In conjunction, soil 

samples are collected and spatially interpolated to generate geo-registered grid-based surfaces of 

nutrient levels. 

 

These data are analyzed to relate the spatial variations in yield to the nutrient data patterns in the 

field (spatial dependency/correlation) using such techniques as map comparison, similarity 

analysis, zoning, clustering, regression and other statistical approaches (see Author’s note).  

Once viable relationships are identified, a prescription map is generated that instructs on-the-fly 

application of varying nutrient inputs as a GPS-enabled floater rig moves throughout the field—

right amount, right place. 

 

Some might thing precision farming is an oxymoron when reality is mud up to the axels and 400 

acres to plow; however sophisticated uses of geotechnology are rapidly changing production 

agriculture.  In just ten years it has become nearly impossible to purchase equipment without 

wiring for GPS navigation within inches and variable rate robotics for on-the-fly crop 

monitoring, seeding, pesticides, as well as nutrient application. 

 

What really is revolutionary is the changing mindset from whole-field to site-specific 

management and the spatial data mining process used to derive spatial relationships that translate 

geographic variation in data patterns into prescription maps.  Figure 2 depicts a generalized 

flowchart of the process that can be applied to a number of disciplinary fields.   

 

 
Figure 2. A similar process for mining and utilizing spatial relationships can be applied to other 

disciplinary fields. 
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For example, my first encounter with spatial data mining procedures was in extending a test 

market project for a phone company in the early 1990s.  Customer addresses were used to geo-

code map coordinates for sales of a new product enabling different rings to be assigned to a 

single phone line—one for the kids and another for the parents.  Like pushpins on a map, the 

pattern of sales throughout the test market area emerged with some areas doing very well, while 

other areas sales were few and far between. 

 

The demographic data for the city was analyzed to calculate a prediction equation between 

product sale and census block data.  The equation then was applied to another city by evaluating 

existing demographics to “solve the equation” for a predicted sales map.  In turn, the predicted 

sales map was combined with a wire-exchange map to identify switching faculties that required 

upgrading before release of the product in the new city. 

 

Crop yield and sales yield at first might seem worlds apart, as do the soil nutrient and 

demographic variables that drive them.  However from an analytical point of view the process is 

identical—just the variables are changed to protect the innocent.  It leads one to wonder what 

other application opportunities await a paradigm shift from traditional to spatial statistics in other 

disciplines.   
______________________________ 

Author’s Note:  For more information on Precision Agriculture, see feature article “Who’s Minding the Farm” (GeoWorld, 
February, 1998) or shortened online version at www.geoplace.com/ge/2000/0800/0800pa.asp   (GeoEurope). 

 

 

Spatial Data Mining Allows Users to 
Predict Maps 
(GeoWorld, January 2002, pg. 20-21) 

(return to top of Topic) 
 

Talk about the future of GIS… how about maps of things yet to come?  Sounds a bit far fetched 

but Spatial Data Mining is taking us in that direction.  For years non-spatial statistics has been 

predicting things by analyzing a sample set of data for a numerical relationship (equation) then 

applying the relationship to another set of data.  The drawbacks are that the non-approach 

doesn’t account for geographic relationships and the result is just a table of numbers.   

Extending predictive analysis to mapped data seems logical.  After all, maps are just organized 

sets of numbers.  And GIS enables us to link the numerical and geographic distributions of the 

data.  The past several columns have discussed how the computer can “see” spatial data 

relationships— “descriptive techniques” for assessing map similarity, classification units and 

data zones.  The next logical step is to apply “predictive techniques” to generate extrapolative 

maps. 

 

If fact, the first time I used prediction mapping was in 1991 to extend a test market project for a 

phone company.  The customer’s address was used to geo-code sales of a new product that 

enabled two numbers with distinctly different rings to be assigned to a single phone— one for 

the kids and one for the parents.  Like pushpins on a map, the pattern of sales throughout the city 

emerged with some areas doing very well, while in other areas sales were few and far between.   
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The demographic data for the city was analyzed to calculate a prediction equation between 

product sales and census block data.  The prediction equation derived from the test market sales 

in one city was applied to another city by evaluating exiting demographics to “solve the 

equation” for a predicted sales map.  In turn the predicted map was combined with a wire-

exchange map to identify switching facilities that required upgrading before release of the 

product in the new city.  

 

To illustrate the data mining procedure, the approach can be applied to the cornfield data that has 

been focus for the past several columns.  The top portion of figure 1 shows the yield pattern for 

the field varying from a low of 39 bushels per acre (red) to a high of 279 (green).  Corn yield, 

like “sales yield,” is termed the dependent map variable and identifies the phenomena we want 

to predict. 

 

The independent map variables depicted in the bottom portion of the figure are used to uncover 

the spatial relationship— prediction equation.  In this instance, digital aerial imagery will be 

used to explain the corn yield patterns.  The map on the left indicates the relative reflectance of 

red light off the plant canopy while the map on the right shows the near-infrared response (a 

form of light just beyond what we can see). 

 

 
Figure 1.  The corn yield map (top) identifies the pattern to predict; the red and near-infrared 

maps (bottom) are used to build the spatial relationship. 
 

While it is difficult for you to assess the subtle relationships between corn yield and the red and 

near-infrared images, the computer “sees” the relationship quantitatively.  Each grid location in 
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the analysis frame has a value for each of the map layers— 3,287 values defining each geo-

registered map covering the 189-acre field.   

 

For example, top portion of figure 2 identifies that the example location has a “joint” condition 

of red equals 14.7 counts and yield equals 218 bu/ac.  The red lines in the scatter plot on the right 

show the precise position of the pair of map values—X= 14.7 and Y= 218.  Similarly, the near-

infrared and yield values for the same location are shown in the bottom portion of the figure.   

In fact the set of “blue dots” in both of the scatter plots represents data pairs for each grid 

location.  The blue lines in the plots represent the prediction equations derived through 

regression analysis.  While the mathematics is a bit complex, the effect is to identify a line that 

“best fits the data”— just as many data points above as below the line.   

 

In a sense, the line sort of identifies the average yield for each step along the X-axis (red and 

near-infrared responses respectively).  Come to think of it, wouldn’t that make a reasonable 

guess of the yield for each level of spectral response?  That’s how a regression prediction is 

used… a value for red (or near-infrared) in another field is entered and the equation for the line is 

used to predict corn yield.  Repeat for all of the locations in the field and you have a prediction 

map of yield from an aerial image… but alas, if it were only that simple and exacting. 

 

 
Figure 2.  The joint conditions for the spectral response and corn yield maps are summarized in 

the scatter plots shown on the right. 
 

A major problem is that the “r-squared” statistic for both of the prediction equations is fairly 

small (R^^2= 26% and 4.7% respectively) which suggests that the prediction lines do not fit the 

data very well.  One way to improve the predictive model might be to combine the information 
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in both of the images.  The “Normalized Density Vegetation Index (NDVI)” does just that by 

calculating a new value that indicates plant vigor— NDVI=  ((NIR – Red) / (NIR + Red)).   

Figure 3 shows the process for calculating NDVI for the sample grid location— ((121-14.7) / 

(121 + 14.7))= 106.3 / 135.7= .783.  The scatter plot on the right shows the yield versus NDVI 

plot and regression line for all of the field locations.  Note that the R^^2 value is a higher at 30% 

indicating that the combined index is a better predictor of yield.  

 

The bottom portion of the figure evaluates the prediction equation’s performance over the field.  

The two smaller maps show the actual yield (left) and predicted yield (right).  As you would 

expect the prediction map doesn’t contain the extreme high and low values actually measured. 

However the larger map on the right calculates the error of the estimates by simply subtracting 

the actual measurement from the predicted value at each map location.  The error map suggests 

that overall the yield “guesses” aren’t too bad— average error is a 2.62 bu/ac over guess; 67% of 

the field is within 20 bu/ac.  Also note that most of the over estimating occurs along the edge of 

the field while most of the under estimating is scattered along curious NE-SW bands. 

 

 
 

Figure 3.  The red and NIR maps are combined for NDVI value that is a better predictor of yield. 
 

While evaluating a prediction equation on the data that generated it isn’t validation, the 

procedure provides at least some empirical verification of the technique.  It suggests a glimmer 

of hope that with some refinement the prediction model might be useful in predicting yield 

before harvest.  Next month we’ll investigate some of these refinement techniques and see what 

information can be gleamed by analyzing the error surface. 
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Stratify Maps to Make Better Predictions  

(GeoWorld, February 2002, pg. 20-21) 
 (return to top of Topic) 

 

The previous section described procedures for predictive analysis of mapped data.  While the 

underlying theory, concerns and considerations can easily consume a graduate class for a 

semester the procedure is quite simple.  The grid-based processing preconditions the maps so 

each location (grid cell) contains the appropriate data.  The “shishkebab” of numbers for each 

location within a stack of maps are analyzed for a prediction equation that summarizes the 

relationships. 

 

In the example discussed last month, regression analysis was used to relate a map of NDVI 

(“normalized density vegetation index” derived from remote sensing imagery) to a map of corn 

yield for a farmer’s field.  Then the equation was used to derive a map of predicted yield based 

on the NDVI values and the results evaluated for how well the prediction equation performed.           

 
Figure 1.  A field can be stratified based on prediction errors. 

 
The left side of figure 1 shows the evaluation procedure.  Subtracting the actual yield values 

from the predicted ones for each map location derives an Error Map.  The previous discussions 

noted that the yield “guesses” weren’t too bad—average error of 2.62 bu/ac with 67% of the 

estimates within 20 bu/ac of the actual yield.  However, some locations were as far off as 144 

bu/ac (over-guess) and –173 bu/ac (under-guess). 

 

One way to improve the predictions is to stratify the data set by breaking it into groups of similar 

characteristics.  The idea is that set of prediction equations tailored to each stratum will result in 

better predictions than a single equation for an entire area.  The technique is commonly used in 

non-spatial statistics where a data set might be grouped by age, income, and/or education prior to 

analysis.  In spatial statistics additional factors for stratifying, such as neighboring conditions 

and/or proximity, can be used. 

 

While there are several alternatives for stratifying, subdividing the error map will serve to 

illustrate the conceptual approach.  The histogram in the center of figure 1 shows the distribution 
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of values on the Error Map.  The vertical bars identify the breakpoints at plus/minus one standard 

deviation and divide the map values into three strata—zone 1 of unusually high under-guesses 

(red), zone 2 of typical error (yellow) and zone 3 of unusually high over-guesses (green).  The 

map on the right of the figure locates the three strata throughout the field.   

 

The rationale behind the stratification is that the whole-field prediction equation works fairly 

well for zone 2 but not so well for zones 1 and 3.  The assumption is that conditions within zone 

1 makes the equation under estimate while conditions within zone 3 cause it to over estimate.  If 

the assumption holds one would expect a tailored equation for each zone would be better at 

predicting than an overall equation.  Figure 2 summarizes the results of deriving and applying a 

set of three prediction equations. 

 

 
Figure 2.  After stratification, prediction equations can be derived for each element. 

 
The left side of the figure illustrates the procedure.  The Error Zones map is used as a template to 

identify the NDVI and Yield values used to calculate three separate prediction equations.  For 

each map location, the algorithm first checks the value on the Error Zones map then sends the 

data to the appropriate group for analysis.  Once the data has been grouped a regression equation 

is generated for each zone.  The “r-squared” statistic for all three equations (.68, .60, and .42 

respectively) suggests that the equations fit the data fairly well and ought to be good predictors.  

The right side of figure 2 shows the composite prediction map generated by applying the 

equations to the NDVI data respecting the zones identified on the template map.   

 

The left side of figure 3 provides a visual comparison between the actual yield and predicted 

maps.  The “stratified prediction” shows detailed estimates that more closely align with the 

actual yield pattern than the “whole-field” derived prediction map.  The error map for the 

stratified prediction shows that eighty percent of the estimates are within +/- 20 bushels per acre.   

The average error is only 4 bu/ac with maximum under and over-estimates of –81.2 and 113, 
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respectively.  All in all, not bad guessing of yield based on a remote sensing shot of the field 

nearly a month before the field was harvested. 

 

A couple of things should be noted from this example of spatial data mining.  First, that there is a 

myriad of other ways to stratify mapped data—1) Geographic Zones, such as proximity to the 

field edge; 2) Dependent Map Zones, such as areas of low, medium and high yield; 3) Data 

Zones, such as areas of similar soil nutrient levels; and 4) Correlated Map Zones, such as micro 

terrain features identifying small ridges and depressions.  The process of identifying useful and 

consistent stratification schemes is an emerging research frontier in the spatial sciences. 

 

 

 
Figure 3.  Stratified and whole-field predictions can be compared using statistical techniques. 

 
Second, the error map is key in evaluating and refining the prediction equations.  This point is 

particularly important if the equations are to be extended in space and time.  The technique of 

using the same data set to develop and evaluate the prediction equations isn’t always adequate.  

The results need to be tried at other locations and dates to verify performance.  While spatial data 

mining methodology might be at hand, good science is imperative.    

 

Finally, one needs to recognize that spatial data mining is not restricted to precision agriculture 

but has potential for analyzing relationships within almost any set of mapped data.  For example, 

prediction models can be developed for geo-coded sales from demographic data or timber 

production estimates from soil/terrain patterns.  The bottom line is that maps are increasingly 

seen as organized sets of data that can be map-ematically analyzed for spatial relationships… we 
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have only scratched the surface. 

_________________ 
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