Map Analysis: Understanding Spatial Patterns and Relationships
by Joseph K. Berry
Topic 5. Calculating Visual Exposure - Visual analysis is an extension of effective distance measurement that considers line-of-sight connectivity among map locations. This section discusses the procedures, considerations and applications of derived viewshed and visual exposure maps.

18 Line-of-Sight Buffers Add Intelligence to Maps - describes procedures for creating line-of-sight buffers that track relative visual exposure and noise levels.

19 Identify and Use Visual Exposure to Create Viewshed Maps -

 discusses basic considerations and procedures for establishing viewsheds and visual exposure from point, line and polygonal features.20 Visual Exposure Is in the Eye of the Beholder -investigates procedures for assessing simple and weighted visual exposure.
21 Use Exposure Maps and Fat Buttons to Assess Visual Impact describes procedures for creating a simple model that determines the relative visual impact of alternative power line routes on local residences.

Hands-on Experience

Exercise 5.1 Calculating Viewsheds - in
this exercise you will first create a map of all the water locations (viewer map) in the Tutor25 database and then generate a simple viewshed map that indicates the visual connectivity to water-all locations are identified as either $0=$ not seen or $1=$ seen from at least one water location.

Exercise 5.2 Calculating
Visual Exposure - this exercise demonstrates generating a visual exposure map to water indicating the number water locations visually connected to each grid location in a project area$0=$ not seen with increasing values indicating higher visual exposure to water.

Exercise 5.3 Accounting for Screens - this exercise extends the previous exercise to create another visual exposure map to water that accounts for a screening forest canopy of 75 feet and then compares the result to the "non-screened" solution to determine the differences in the two approaches.

Exercise 5.4 Calculating Weighted Visual Exposure

- this exercise first calibrates Roads in terms of traffic flow and then creates a weighted visual exposure map accounting for the relative amount of traffic on different road types- $0=$ not seen from any road location with increasing values indicating higher weighted visual exposure to traffic flows.

Exercise 5.5 Modeling Visual
Exposure Impacts - this exercise creates and classifies visual exposure maps for relative connectivity to roads and houses (Low, Medium, High) and then combines the two classified maps into a single map that characterizes the joint visual exposure for each map location using a 2-digit code-a location with a value of 11 indicates $1=$ Low housing exposure and $1=$ Low roads exposure; a value of 12= Low/Medium, ... to a value of $33=$ High/High.

Exercise 5.6 Extending Visual
Analysis to Other Areas - this exercise creates a visual exposure map to roads and graphically overlays it on the Elevation surface for the Island database.

Cross-Reference for Grid-based Map Analysis Operations used in Topic 5 exercises (a complete cross-reference is on Companion CD)				
Class	Description	MapCalc Command	$\underset{\substack{\text { ESRI GRID/SA } \\ \text { Command }}}{\text { E }}$	ERDAS Imagine Command
Reclassify	Assigns new values to the categories on an existing map	RENUMBER	RECLASS	RECODE
Distance	Creates a map indicating areas that are visible from specified locations (visual exposure)	RADIATE (simply)	VISENCODE, VISIBIIITY	VIEWSHED ANALYSIS
Distance	Creates a map of the number of visual connections from a set of viewing locations (visual exposure)	RADIATE (completely)	VISENCODE, VISIBILITY (limited visual exposure)	<None, only simple viewshed>
Distance	Creates a map of the viewshed or visual exposure considering screening features (i.e., tree height) on top of the elevation surface	RADIATE (thru)	VISENCODE, VISIBILITY (limited screening capability)	<None, only simple viewshed>
Distance	Creates a map of the sum of the weights of the visual connections from a set of viewing locations (weighted visual exposure)	RADIATE (weighted)	<None, only nonweighted visual exposure>	<None, only simple viewshed>
Overlay	Creates a map as the mathematical or statistical function of two or more maps	CALCULATE (plus)	GRIDMATH	ADD

Topic 5 Exercises

Access MapCalc using the Tutor25.rgs by selecting Start \ddagger Programs \ddagger MapCalc Learner \ddagger MapCalc Learner \ddagger Open existing map set \ddagger MapCalc Data \ddagger Tutor25.rgs. The following set of exercises utilizes this database.

5.1 Calculating Viewsheds

did
Use the View button (binocular icon) to select and display the Water map.

Note that there are eight different types of water depending on its flow.

Press the Map Analysis button and choose Reclassify \ddagger Renumber to access the dialog box for reclassifying map values. Complete the input specifications as shown below to derive a binary map of Flowing Water

Add Select the Water map from the drop-down list, then specify $\mathbf{1}$ as the NewValue, $\mathbf{1}$ as the OldValue and $\mathbf{8}$ as the OldUpperValue. Press the Add button to submit the reassignment phrase. Specify
Flowing_water as the new map name and press OK to create a binary map where $1=$ any water type and $0=$ not water.

RENUMBER Water ASSIGNING 1 TO 1 THRU 8 FOR Flowing_water

Press the Use Cells button to set the display type to Grid.

Shading Manager button then enter "Flowing water" as the category description. Double-click on the red Color and choose blue from the color pallet. Click OK to submit the display changes.

Press the Map Analysis button and choose Distance \ddagger Radiate to access the dialog box for visual analysis. Complete the input specifications as described below to derive a binary map of Water_viewshed.

Help Press the Help button to get a description of the Radiate command's function and input fields. Specify...

Flowing_water as the viewersMap
Elevation as the surfaceMap
100 as the \# of grid spaces away
1 as the viewer_heightValue
Simply as the calculation mode (binary viewshed)
Water_viewshed as the newMap

RADIATE
Flowing_water OVER Elevation TO 100 AT 1
NULLVALUE 0 Simply FOR Water_viewshed

Double-click on the map legend to pop-up the Shading Manager dialog box. Enter a description for the map Categories as $1=$ "Visible from flowing water" and $0=$ "Not visible." Note that approximately 95% of the project area is visually connected to flowing water and that the few "Not visible" areas are concentrated along the eastern edge.

On your own, follow a similar visual analysis procedure to generate a viewshed map (Roads_viewshed) of any road location (based on the Roads_type map). What percent of the project area is visually connected to roads?
$\sqrt{\alpha}$

Press the Map Analysis button and choose Distance \ddagger Radiate to access the dialog box for visual analysis. Complete the input specifications as shown below to derive a visual exposure map showing "how many" water grid cells are visually connected to every location within in the project area.

Flowing water OVER Elevation TO 100 AT NULLVALUE 0 Completely FOR Water_visualExposure

Selecting the "Completely" calculation mode identifies the number of connected viewer cells. Larger values indicate higher visual exposure to water-locations that "seen" from a lot of water locations (and by direct line-of-sight, "see" a lot from water locations).

Press the Layer Mesh button to

 superimpose the analysis grid. Press the Use Cells button to set the display type to Grid.

Number of tanges $\sqrt{12} \quad \square$ Double-click on the legend to pop-up the Shading Manager. Change the Number of ranges to 12. Note that the data intervals are expressed as increasing steps of 10 additional viewer cells (water locations).

5.2 Calculating Visual Exposure

Under the Lock column, click Off the automatically assigned yellow inflection point for the range 30 to 40 . Click the Color block for range for 50 to 60 and select yellow from the pallet to reset the color inflection point on the color ramp. Switch the colors for the minimum and maximum ranges by clicking on the respective color blocks and choose green for the lowest range and red for the highest range. Press OK to generate the new display.

Use the Shading Manager to create a display that isolates the areas of very high visual exposure (70 or more water locations visible) as red with a background of grey-set grey as the Color from 0-10 through the 60-70 intervals and Lock on red for the 70-80 and 110-121ranges.

On your own, follow a similar visual analysis procedure to generate a visual exposure map (Roads_visualExposure) of any road location
(based on the Roads_type map). What is the highest visual exposure to roads in the project area?

5.3 Accounting for Screens

Use the View button (binocular icon) to select and display the Covertype map.
 Use the Map Analysis button and choose Reclassify \ddagger Renumber to access its dialog box and complete as shown.

RENUMBER Covertype ASSIGNING 0 TO 1 THRU 2 ASSIGNING 75 TO 3 FOR Tree_height

Do not forget to press the Add button to enter each Renumber phrase...

```
ASSIGNING 0 TO 1 THRU 2 (Water & Meadow)
ASSIGING 75 TO 3 (Forest)
```

...to indicate the height of the vegetation canopy (same units as the Elevation map). This assigns 0 feet (NewValue) for Water (Oldvalue $=1$) and Meadow (OldValue $=2$) locations and 75 feet (NewValue) for Forest locations (OldValue= 3).

Press the Map Analysis button and choose Distance \ddagger Radiate to access the dialog box for visual analysis. Complete the input
specifications as described below to derive a visual exposure map accounting for the height of the tree canopy.

RADIATE Flowing_water
OVER Elevation TO 100 AT 1 NULLVALUE 0 THRU Tree_height Completely FOR Water_treesVExpose
\qquad Double-click on the legend to pop-up the Shading Manager. Change the Number of ranges to $\mathbf{1 2}$.

Mode to User Defined Ranges.

Min $[>=1$	Max <1
110	121
100	110
90	100
80	90
70	80
60	70
50	60
40	50
30	40
20	30
10	20
0	10

Starting at the bottom of the Min [$>=$] column enter values increasing by $\mathbf{1 0}$ as shown above, then ending with $\mathbf{1 2 1}$ at the top of the Max [<] column. Set the Color settings the same as before- green for the lowest range, red for the highest range and yellow for the 50 to 60 range. Press OK to display the map using the custom legend that is the same as used for displaying the Water_visualExposure map generated in the previous section.

Click on the Restore Down button in the upper-right corner of the display. Use standard Windows "click-and-drag/size" techniques to position the Water_visualExposure and Water_treesVExposure side by side as shown below.

Note the visual differences between the two maps-visual exposure with and without accounting for the height of the tree canopy. The area of high visual exposure (red tones) that accounts for the tree canopy barriers has a similar shape but is smaller than the corresponding area without trees.

星 目 Note: Each map display is contained in a separate window. Standard Windows techniques such as cascading, horizontal and vertical "tiling" are available.

5.4 Calculating Weighted Visual Exposure

4
Use the View button (binocular icon) to display the Roads_type map.

Press the Map Analysis button and choose Reclassify \ddagger Renumber to access its dialog box and complete as shown.

RENUMBER Roads
ASSIGNING 1 TO 1 ASSIGNING 3 TO 2 ASSIGNING 5 TO 3 ASSIGNING 15 TO 4 ASSIGNING 3 TO 21 ASSIGNING 5 TO 31 THRU 32 ASSIGNING 15 TO 41 THRU 43 FOR Roads_relativeVis

Do not forget to press the $A d d$ button to enter each Renumber phrase...

ASSIGNING 1 TO 1	(one car)
ASSIGING 3 TO 2	(three cars)
ASSIGNING 5 TO 3	(five cars)
ASSIGNING 15 TO 4	(fifteen cars)

...to indicate the relative number of cars in a given period of time.

$\sqrt{\alpha}$

Press the Map Analysis button and choose Distance \ddagger Radiate to access the dialog box for visual analysis. Complete the input specifications as shown below to derive a weighted visual exposure map showing the relative visual exposure to roads for every location within in the project area.

Road_relativeVis OVER Elevation TO 100 AT 1
NULLVALUE 0 Weighted FOR
Roads_weightedVExpose

40.347022 - $104.035075[1,20]=529.0$ Note that the weighted visual exposure ranges from 0 to 529 . The most visually exposed location is in the west border at column 1, row 20 as reported in the lower-left corner of the display window as the mouse is positioned over the location on the map.

5.5 Modeling Visual Exposure Impacts

Roads_weightedVExpose map's legend to popup the Shading Manager. Select the Histogram tab and click Std. Dev. button to get a plot of the data distribution. Note that the average is about 150.

Based on the Roads_weightedVExpose data distribution, create a map that identifies areas of...

Low= 1 (0-100 seen)
Medium $=2$ (100-200 seen)
High= 3 (>200 seen)
...visual exposure by choosing Reclassify \ddagger
Renumber and completing the dialog box as shown below.

Roads_weightedVExpose ASSIGNING 1 TO 0 THRU 100 ASSIGNING 2 TO 100 THRU 200 ASSIGNING 3 TO 200 THRU 1000 FOR Road_VExpose_classes

Notice that the area of High visual exposure to roads is concentrated in the northwestern portion of the project area while the areas of Low visual exposure are generally in the southeast.

Use the View button (binocular icon) to select and display the Housing map.

The values stored for grid cell indicates how many houses occur at that location (1 hectare grid cell).
$\sqrt{\alpha}$

Press the Map Analysis button and choose Distance \ddagger Radiate to access the dialog box for visual analysis. Complete the input specifications as shown below to derive a weighted visual exposure map showing the relative visual exposure to houses for every location within in the project area.

RADIATE Housing OVER Elevation TO 100 AT 1 NULLVALUE 0 Weighted FOR Houses_weightedVExpose

Use the Shading Manager
Histogram tab to get an idea of the data distribution for the Housing_weightedVExpose surface.

Create a map that identifies areas of Low, Medium and High visual exposure by 1) pressing the Map Analysis button 2) choosing Reclassify \ddagger Renumber and 3) completing the dialog box as shown below so...

[^0]

RENUMBER
Houses_weightedVExpose ASSIGNING 10 TO 0 THRU 10 ASSIGNING 20 TO 10 THRU 30 ASSIGNING 30 TO 30 THRU 1000 FOR Housing_VExpose_classes

Combine the two maps indicating the classes of visual exposure to roads and houses by Map Analysis \ddagger Overlay \ddagger Calculate and completing the following dialog box as shown below.

Housing_VExpose_classes + Road_VExpose_classes FOR Houses_Roads_VExpose_classes

To select a map, select Maps and choose the map from the drop-down list. You can select the math operation from the Functions list or simply enter the " + " symbol to indicate addition.

Press the Use Cells button to switch the default display to discrete data type.

Use the Shading Manager to label each of visual exposure combinations. For example, the 11 value is interpreted as condition class "oneone" (Low, Low) derived by adding a $10=$ Low Housing_VExpose_class plus 1= Low Roads_VExpose_class.

Isolate the visually sensitive areas by selecting Map Analysis \ddagger Reclassify \ddagger Renumber and completing the dialog box as shown.

RENUMBER
Roads_Houses_VExpose_classes ASSIGNING 0 TO 0 THRU 33 ASSIGNING 1 TO 32 THRU 33 ASSIGNING 1 TO 23 FOR High_VEsensitivity

Note that about a third of the project area is visually vulnerable and is concentrated in the northwestern portion of the area. "Ugly" development or activities ought to avoid these areas.

On your own, follow a similar visual analysis procedure to generate a map that identifies visual exposure classes to water (Water map) and forest cover (Covertype map). What percent of the project area has high visual exposure to water and forest combined? "Pretty" areas like these might be potential areas for hiking trails or that new cabin you have wanted to build.

5.6 Extending Visual Analysis to Other Areas

Click on the Map Analysis button and select Script \ddagger Save As... and specify a file name for the command script such as Tutor25_exercises_5.scr. This will save all of your work so you can re-access the command file at a later date by selecting Map Analysis \ddagger Script \ddagger Open \ddagger Tutor25_exercises_5.scr.

To save the database, from the main menu select File \ddagger Save As... and save the file under a different name than the basic Tutor25.rgs name, such as Tutor25_exercises_5.rgs.

Click on the Open existing file button and respond No to whether you want to save changes to the existing database.

Select the Island.rgs database from the list and click Open.

Using the Elevation surface and Roads map create a Viewshed map identifying all locations that can be seen (at least once) from the road network.

Use the Land_mask map and the Map Analysis \ddagger Reclassify \ddagger Cover operation to enter the command...

Roads_viewshed WITH Land_mask IGNORE 0 FOR Roads_viewshed_land

What percent of the project area is classified as "land seen from roads."

Repeat the procedure calculating a Visual Exposure map from roads. Display the map using User Defined calculation mode for ranges from -1 to 0, 0 to 10, 10 to $20, \ldots, 90$ to 96.

Assign blue to -1 to 0 , green to 0 to 10 , yellow to 40 to 50 and red to 90 to 96 .

Create a more interesting display by draping the visual exposure map over a 3-dimension plot of the terrain by-

4
Use the View button (binocular icon) to display the Elevation map.

Use the Toggle 3D view button to switch the display to a 3-dimensional plot.

From the main menu select
Map \ddagger Overlay \ddagger Roads_VExpose_land to superimpose the visual exposure map on the Elevation surface.

Select the Zoom Out tool (magnifying glass with minus sign), click/drag up/down anywhere on the display to size the plot. Use the Move tool (hand) and click/drag to center the plot.

Use the Save picture of map button to capture a "screen grab" of the display as a file named FancyMap_graphic.jpg.

Use Windows Explorer to browse to the saved file and double click on it to display in your default viewer.

Open a blank Word document and insert the saved file into it by-

From the main Word menu select Insert \ddagger Picture \ddagger From File... and browsing to the saved file.

Note: The MapCalc "Save picture of map" button provides basic screen grab capability of just the map window. Microsoft Windows "Ctrl/Print Screen" capability grabs the entire computer screen. The inexpensive yet versatile SnagIt program provides advanced screen capture capabilities and was used to capture/insert all of the graphics used in this book. To order, see...www.techsmith.com/

[^0]: Low $=1$ (0-10 houses seen)
 Medium = 2 (10-30 houses seen)
 High= 3 (>30 houses seen)

