
Analyzing Geo-Spatial Resource Data

A Hands-on Case Study in Spatial Analysis and Data Mining

Joseph K. Berry

W.M. Keck Scholar in Geosciences University of Denver Denver, Colorado

Table of Contents

1. Overview

- 1.1 Introduction
- 1.2 Mapping versus Analysis
- 1.3 Suitability Modeling
- 1.4 Some Assembly Required
- 1.5 Exercises

Examples of Analysis Capabilities Viewing Full Color Figures Installing Companion Software

2. Maps as Data

- 2.1 Visualizing Map Surfaces
- 2.2 Numbers First, Pictures Later
- 2.3 Framing Maps
- 2.4 Organizing Raster Data
- 2.5 Visualizing Map Values
- 2.6 Exercises

Interacting with Grid Maps Grid-based Thematic Mapping Map Summary Statistics and Charts Map Normalization

3. Reclassifying and Overlaying Maps

- 3.1 A Map-ematical Framework
- 3.2 Reclassifying Map Values
- 3.3 Overlaying Maps
- 3.4 Characterizing Spatial Coincidence
- 3.5 A Simple Habitat Model
- 3.6 Exercises

Spatial Analysis Operations
Reclassifying Map Features
Calculating Change
Summarizing Map Regions
Characterizing Map Coincidence
Evaluating a Simple Habitat Model

4. Mapping Visual Exposure

- 4.1 Identifying and Using Visual Exposure
- 4.2 There's More That Meets the Eye
- 4.3 Assessing Visual Impact
- 4.4 Visual Vulnerability
- 4.5 Visual Aesthetics
- 4.6 Exercises

Calculating Viewsheds
Calculating Visual Exposure
Accounting for Screens
Calculating Weighted Visual Exposure
Modeling Visual Exposure Impacts
Extending Visual Analysis to Other Areas

5. Creating Variable-Width Buffers

- 5.1 Variable-Width Buffer
- 5.2 Line-of-Sight Buffer
- 5.3 Effective Distance Buffer
- 5.4 Effective Distance Algorithm
- 5.4 Exercises

Calculating Simple Proximity

Calculating Uphill Proximity

Calculating Effective Proximity

6. Applying Effective Distance and Connectivity

- 6.1 Calculating Hiking-Time
- 6.2 Incorporating Effective Distance
- 6.3 Basics of Surface Flow
- 6.4 Characterizing Overland Flow
- 6.5 Constructing Realistic Downhill Flows
- 6.6 Calculating Flow Time and Quantity
- 6.7 Determining Spill Impacts
- 6.8 Exercises

Simple Proximity

Effective Proximity

Identifying Optimal Paths

Extending the Analysis

Surface Flow Analysis

7. Identifying Optimal Routes

- 7.1 Identifying the Most Preferred Route
- 7.2 Considering Multi-Criteria in Routing
- 7.3 Calibrating and Weighting Criteria
- 7.4 Evaluating Alternative Routes
- 7.5 Exercises

Routing Model

Extended Routing Model

8. Characterizing Terrain Features

- 8.1 Identifying Micro-Terrain Features
- 8.2 Characterizing Local Terrain Conditions
- 8.3 Assessing Terrain Slope and Roughness
- 8.4 Calculating Realistic Areas
- 8.5 Identifying Valley Bottoms
- 8.6 More on Slope's Slippery Slope
- 8.7 Exercises

Deriving Slope

Establishing Roughness

Identifying Convex/Concave Features

9. Analyzing Landscape Patterns

- 9.1 Summarizing Spatial Context
- 9.2 Calculating Nearby Neighbor Statistics
- 9.3 Analyzing Landscape Structure
- 9.4 Getting to the Core
- 9.5 Assessing Forest Fragmentation
- 9.6 Exercises

Calculating Size

Establishing Diversity

Determining Proportion Similar

Deriving Configuration Indices

10. GIS Modeling Procedures

- 10.1 Constitution of a GIS Model
- 10.2 A Classification Guide for GIS Models
- 10.3 Expressing Model Structure and Logic
- 10.4 Recipes for Solving Spatial Problems
- 10.5 Extending Model Solutions
- 10.6 Infusing Science into GIS Models
- 10.7 Exercises

Campground Suitability Model Extended Campground Model Editing and Using Scripts

11. Surface Modeling

- 11.1 The Average Is Hardly Anywhere
- 11.2 Under the Hood of Spatial Interpolation
- 11.3 From Point Samples to Map Surfaces
- 11.4 Benchmarking Interpolation Results
- 11.5 Assessing Interpolation Results
- 11.6 The Bigger Picture
- 11.7 Exercises

Interpolating Point data (IDW)
Interpolating Point Data (KRIG)
Comparing Interpolation Results
Evaluating Interpolation Performance

12. Spatial Data Mining

- 12.1 Comparing Yield Maps (Discrete)
- 12.2 Comparing Yield Surfaces (Continuous)
- 12.3 Calculating Field Similarity
- 12.4 Identifying Data Zones
- 12.5 Mapping Data Clusters
- 12.6 Exercises

Comparing Yield Maps Comparing Yield Surfaces Characterizing Map Similarity Identifying Data Zones Mapping Data Clusters

13. Predictive Modeling

- 13.1 Predicting Yield Maps
- 13.2 Assessing Prediction Model Results
- 13.3 Stratifying Maps for Better Predictions
- 13.4 Exercises

Predictive Modeling
Calculating Error
Deriving a Stratified Model

Epilog

Appendix A. Quick Set of Exercises

Appendix B. Creating Your Own Grid-based Database

Analyzing Geo-Spatial Resource Data