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(return to top of Topic)  
 

GIS means different things to different people.  My favorite characterization is that “GIS 

technology is as different as it is similar to traditional mapping and data analysis.”  That 

statement leaves some room for both conventional and unconventional views of what GIS is, 

what it’s good for, and who uses it for what.  

 

For example, traditional mapping focuses on points, lines and polygons as fundamental map 

features.  Spatial database management systems (desktop mapping packages) extend this view by 

linking the discrete “map objects” to descriptive information about them.  The nature of the 

maps, as well as the linkage, is as familiar as the map on the wall and the file cabinet beside it.  

The paradigm also fits nicely into standard office software with only minimal education and 

training in unfamiliar spatial reasoning.  

 

The problem is the traditional paradigm doesn’t fit a lot of reality.  Sure the lamppost, roadway 

and the parking lot at the mall are physical realities of a map’s set of points, lines and polygons.  

Even very real (legally), though non-physical, property boundaries conceptually align with the 

traditional paradigm.  But not everything in space can be so discretely defined, nor is it as easily 

put in its place.  

 

Obviously meteorological gradients, such as temperature and barometric pressure, don’t fit the P, 

L and P mold.  They represent phenomena that are constantly changing in geographical space, 

and are inaccurately portrayed as contour lines, regardless how precisely the lines are drawn.  By 

its very nature, a continuous spatial variable is corrupted by artificially imposing abrupt 

transitions.  The contour line is simply a mechanism to visually portray a 2-dimensional 

rendering of a 3-dimensional gradient.  It certainly isn’t a basic map feature, nor should it be a 

data structure for storage of spatially complex phenomena.  

 

Full-featured GIS packages extend the basic P, L and P features to map surfaces that treat 

geographic space as a continuum.  The most familiar surface feature is the terrain you walk on, 

composed of hills and valleys and everything in between.  One of the unique characteristics of an 

elevation surface is well known to hikers— terrain steepness or slope.  While hikers hate steep 

slopes, avalanches love them.  Another unique characteristic of surfaces determines the 

orientation for a portion of the surface— aspect.  Elk seek out southern exposures in the winter, 

but thirsty trees wouldn’t be caught dead there in a moisture-limited climate.  

 

While a contour map of elevation lets your eye assess slope (closeness of lines) and aspect 

(downhill direction), it leaves the computer without a clue, as all it can see is a pile of numbers 

(digital data), not an organized set of lines (analog image).  

 

Figure 1 links different views of surface data.  Keep in mind, that the computer doesn’t “see” any 

of them; they’re for human viewing enjoyment.  The traditional 2-D map view chooses a map 

value, then identifies all of the locations (mathematically implied) having that value.  That begs 

the traditional GIS 101 question, “Does a set of contours form point, line or area features?”  

Actually, arguments can be made for any of the discrete feature types depending on the 

application.  
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Figure 1. A histogram (numerical distribution) is linked to a map surface (geographic 

distribution) by a common axis of map values. 

 

However, it’s the discrete nature of a contour map and the irregular features spawned that restrict 

its ability to effectively represent continuous phenomena.  The data view uses a histogram to 

characterize a continuum of map values in “numeric” space.  It summarizes the number of times 

a given value occurs in a data set (relative frequency).  

 

The 3-D map view forms a continuous surface by introducing a regular grid over an area.  The X 

and Y axes position the grid cells in geographic space, while the Z axis reports the numeric value 

at that location.  Note that the data and surface views share a common axis— map value.  It 

serves as the link between the two perspectives.  For example, the data view shows number of 

occurrences for the value 42 and the relative numerical frequency considering the occurrences 

for all other values.  Similarly, the surface view identifies all of the locations having a value of 

42 and the relative geographic positioning considering the occurrences for all other values.  

 

The concept of an “aggregation interval” is shared as well.  In constructing a histogram, a 

constant data step is used.  In the example, a data interval of 1.0 unit was used, and all fractional 

values were rounded, then “placed” in the appropriate “bin.”  In an analogous fashion, the 

aggregation interval for constructing a surface uses a constant geographic step, as well as a 

constant data step.  In the example, an interval of 1.0 hectare was used to establish the constant 

partitioning in geographic space.  In either case, the smaller the aggregation interval the better 

the representation.  

 

Both perspectives characterize data dispersal.  The numeric distribution of data (a histogram’s 

shape of ups/downs) forms the cornerstone of traditional statistics and determines appropriate 

data analysis procedures.  In a similar fashion, a map surface establishes the geographic 

distribution of data (a surface’s shape of hills/valleys) and is the cornerstone of spatial statistics.  

The assumptions, linkages, similarities and differences between these two perspectives of data 

distribution are the focus of the next few columns… we’ll dust off the old stat book together.  
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Link Data and Geographic Distributions  
(GeoWorld, June 1998)    

(return to top of Topic)  
 

Some of the previous Beyond Mapping columns might have found you reaching for your old Stat 

101 textbook.  Actually, the concepts used in mapped data analysis are quite simple— it’s the 

intimidating terminology and “picky, picky” theory that are hard.  The most basic concept 

involves a number line that is like a ruler with tic-marks for numbers from small to large.  

However, the units aren’t always inches, but data units like number of animals or dollars of sales.  

If you placed a dot for each data measurement (see top of figure 1), there would be a minimum 

value on the left (#animals = 0) extending to a maximum value on the right.  The rest of the 

points would fall on top of each other throughout the data range.  

 

 
 

Figure 1. The distribution of measurements in “data space” is described by its histogram and 

summarized by descriptive statistics. 

 

To visualize these data, we can look at the number line from the side and note where the 

measurements tend to pile up.  If the number line is divided into equally spaced “shoots” (like in 

pinball machine) the measurements will pile up to form a histogram plot of the data’s 
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distribution.  Now you can easily see that most of the measurements fell about midrange.  

 

In statistics, several terms are used to describe this plot and its “central tendency.”  The median 

identifies the “midway” value with half of the distribution below it and half above it, while the 

mode identifies the most frequently occurring value in the data set.  The mean, or average, is a 

bit trickier as it requires calculation.  The total of all the measurements is calculated and then 

divided by the number of measurements in the data set.  

 

Although the arithmetic is easy (for a tireless computer), its implications are theoretically deep.  

When you calculate the mean and its standard deviation you’re actually imposing the “standard 

normal curve” assumption onto the histogram.  The bell-shaped curve is symmetrical with the 

mean at its center.  For the “normally distributed” data shown in the figure, the fit is perfect with 

exactly half of the data on either side.  Also note that the mean, mode and median occur at the 

same value for this idealized distribution of data.  

 

Now let’s turn our attention to the tough stuff— characterizing the data variation about the mean.  

When considering variation one must confront the concept of a standard deviation (StDev).  The 

standard deviation describes the dispersion, or spread, of the data around the mean.  It’s a 

consistent measure of the variation, as one standard deviation on either side of the mean 

“captures” slightly more than two-thirds of the data (.683 of the total area under the curve to be 

exact).  Approximately 95% of all the measurements are included within two standard 

deviations, and more than 99% are covered by three.  

 

The larger the standard deviation, the more variable is the data, indicating that the mean isn’t 

very typical.  In GIS applications, a small standard deviation tells you there isn’t much variation 

in an area of interest.  However, a large standard deviation indicates a lot of variability and using 

a simple average to characterize the area is likely misleading.  

 

So what determines whether a standard deviation is large or small?  That’s the role of the 

coefficient of variation (Coffvar).  This semantically-challenging mouthful simply “normalizes” 

the variation in the data by expressing the standard deviation as a percent of the mean— if it’s 

large, say over 50%, then there is a lot of variation and the mean is a poor estimator of what’s 

happening in a mapped area.  Keep this in mind the next time you assign an average value to 

map features, such as the average tree diameter for each forest parcel, or the average home value 

for each county.  

 

A large portion of the variation can be “explained” through its spatial distribution.  Figure 2 

shows a technique that brings statistics down to earth by mapping the standard normal curve in 

geographic space.  The procedure first calculates the mean and standard deviation for the typical 

response in a data set.  The data is then spatially interpolated into a continuous geographic 

distribution.  A standard normal variable surface is derived by subtracting the mean from the 

map value at each location (deviation from the typical), then dividing by the standard deviation 

(normalizing to the typical variation) and multiplying by a hundred to form a percent.  The result 

is that every map location gets a number indicating exactly how “typical” it is. 
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Figure 2. A “standard normal surface” identifies how typical every location is for an area of 

interest. 

 

The contour lines draped on the SNV surface in the figure show half-StDev steps.  Locations that 

are exactly the same as the mean equate to zero (typical areas).  The high peak in the northeast 

portion locates an area of unusually high response (>200% of a standard deviation above the 

mean).  The entire western portion of the map is characterized by responses below the typical, 

however there are no unusually low areas in this case.  The geographic distribution balances at 

zero (just as many locations above the mean as below), but the data distribution is not balanced 

(no unusually low responses).  This condition (asymmetrical data) muddles the standard normal 

procedure, but that discussion is reserved for techy-types via www.innovativegis.com/basis, 

select Column Supplements.  
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Explore Data Space 
(GeoWorld, July 1998)    

(return to top of Topic)  
 

The previous discussion described a histogram plot and the old bell curve as a computer’s view 

of an individual map.  Now let’s extend those concepts to how a computer “visualizes” several 

maps at a time.  Fundamental to this perspective is recognition that digital maps are “numbers 

first, pictures later.”  In a computer, each map is a long list of numbers, with each value 

identifying a characteristic or condition at a particular location.  

 

Following my usual recipe for journalistic suicide let’s consider the fundamental concepts of the 

dismal discipline of spatial statistics within the context of production agriculture.  For example, a 

map of phosphorous in the top layer of soil (0-5cm) in a farmer’s field contains values ranging 

from 22 to 140 parts per million.  The spatial pattern of these data is characterized by the relative 

positioning of the data values within a reference grid of cell locations.  The set of cells forming 

the analysis grid identifies the spatial domain (geographic space), while the map values 

identifies the data domain (data space).  

 

 
 

Figure 1. The map values for a series of maps can be simultaneously plotted in data space. 

 

A dull and tedious tabular listing, as shown in the center of Figure 1, is the traditional human 

perspective of such data.  We can’t consume a long list of numbers, so we immediately turn the 

entire column of data into a single “typical” value (average) and use it to make a decision.  For 

the soil phosphorous data set, the average is 48.  A location in the center of the field (column 15, 

row 23 of the analysis grid) has a phosphorous level of 46 that is close to the average value (in a 

data sense, not a geographic sense).  But recall that the data range tells us that somewhere in the 

field there is at least one location that is less than half (22) and another that is nearly three times 

the average (140), so the average value doesn’t tell it all.  

 

Now consider additional map surfaces of potassium levels (K5) and soil acidity (Ph5), as well as 

phosphorous (P5), for the field.  As humans we could “see” the coincidence of these data sets by 

aligning their long columns of numbers in a spreadsheet or database.  Specific levels for all three 
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of the soil measurements at any location in the field are identified as rows in the table.  However, 

the combined set of data is even more indigestible, with the only “humane” view of map 

coincidence being the assumption that the averages are everywhere— 48, 419, 6.2 in this 

example.  The center location’s data pattern of 46, 339, and 6.0 is fairly similar to the pattern of 

the field averages, but exactly how similar?  Which map locations in the field are radically 

different?  

 

Before we can answer these questions, we need to understand how the computer “sees” 

similarities and differences in multiple sets of data.  It begins with a three-dimensional plot in 

data space as shown on the right side of figure 1.  The data values along a row of the tabular 

listing are plotted resulting in each map location being positioned in the imaginary box based on 

its data pattern.  Similarity among the field’s soil response patterns are determined by their 

relative positioning in the box— locations that plot to the same position in the data space box are 

identical; those that plot farther away from one another are less similar.  

 

How the computer “measures” the relative distance becomes the secret ingredient in assessing 

data similarity.  Actually it’s quite simple if you revisit a bit of high school geometry, but I bet 

you thought you had escaped all that awful academic fluff when you entered the colorful, fine 

arts world of computer mapping and geo-query. 

 

 
 

Figure 2. Similarity is determined by the data distance between two locations and is calculated 

by expanding the Pythagorean Theorem. 

 

The left side of figure 2 shows the data space plots for soil conditions at two locations in the 

farmer’s field.  The right side of the figure shows a straight line connecting the data points whose 

length identifies the data distance between the points.  Now for the secret— it’s the old 

Pythagorean Theorem of c
2
 = a

2
 + b

2
 (I bet you remember it).   

 

However, in this case it looks like d
2
 = a

2
 + b

2
 + c

2
 as it has to be expanded to three dimensions 

to accommodate the three maps of phosphorous, potassium and acidity (P5, K5 and Ph5 axes in 

the figure).  All that the Wizard of Oz (a.k.a., computer programmer) has to do is subtract the 

values for each condition between two locations and plug them into the equation.  If there are 
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more than three maps, the equation simply keeps expanding into hyper-data space which as 

humans we can no longer plot or easily conceptualize.  

 

The underlying principle is that the smaller the data distance, the greater the similarity between 

locations.  That’s the basics, but the subtle nuances, such as normalizing the axes, provide fodder 

for the next sectuion’s discussion of mapping similarity and clustering data into similar spatial 

patterns— a useful tool down on the farm, but just as useful for retailers, land planners, 

foresters, real estate agents and just about any GIS user.  

 

  

Identify Data Patterns 
(GeoWorld, August 1998)    

(return to top of Topic)  
 

The previous section introduced the concept of data distance.  While most of us are comfortable 

with the concept of distance in geographic space, things get a bit abstract when we move from 

feet and meters in the real world to data units in data space.  
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Figure 1. Clustering uses repeated data distance calculations to identify numerical patterns in a 

data set. 

 

Recall that data space is formed by the intersection of two or more axes in a typical graph.  If 

you measured the weight and height of several students in your old geometry class, each of the 

paired measurements for a person would plot as a dot in XY data space locating their particular 

weight (X axis) and height (Y axis) combination.  A plot of all the data looks like a shotgun blast 

and is termed a scatter plot.  

 

The scatter plots for a lot of data sets form clusters of similar measurements.  For example (see 

figure 1), two distinct groups might be detected in the geometry class’s data— the demure 

cheerleaders (low weight and height) and the football studs (high weight and height).  Traditional 

(non-spatial) data analysis stops at identifying the groupings. Spatial statistics, however, extends 

the analysis to geographic contexts.  
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The scatter plot in inset (a) of figure 1 shows weight/height data that might have been collected 

in your old geometry class.  Note that all of the students do not have the same weight/height 

measurements and that many vary widely from the class average.  Your eye easily detects two 

groups (low/low and high/high) in the plot but the computer just sees a bunch of numbers.  So 

how does it identify the groups without seeing the scatter plot?  

 

If seating “coordinates” accompanied the classroom data you might detect that most of the 

cheerleaders were located in one part of the room, while the studs were predominantly in 

another.  Further analysis might show a spatial relation between the positioning of the groups and 

proximity of the teacher— cheerleaders in front and studs in back.  

 

The linking of traditional statistics with spatial analysis capabilities (such as proximity 

measurement) provides insight into the spatial context and relationships inherent in the data.  The 

only prerequisite is “tagging” geographic coordinates to the measurements.  Until recently, this 

requirement presented quite a challenge and spatial coordinates were rarely included in most data 

sets.  With the advent of GPS and Geo-Coding based on street address, geographic tagging has 

become a whole lot easier.  

 

The new hurdle, however, isn’t so much technical as it is social.  Most data analysis types aren’t 

familiar with spatial concepts, while most GIS types aren’t familiar with data mining and 

knowledge discovery procedures.  With GIS moving beyond mapping and geo-query, 

understanding data analysis concepts becomes as important as understanding geographic 

concepts.  With this in mind, let’s see one way a computer might identify numerical patterns 

within a set data.  

 

One approach (termed k-means clustering) arbitrarily establishes two cluster centers in the data 

space (inset (b)).  The data distance to each weight/height measurement pair is calculated and the 

point is assigned to the closest cluster center.  Recall from the previous section that the 

Pythagorean Theorem of c
2
 = a

2
 + b

2
 is used to calculate the data distance and can be extended 

to more than just two variables (hyper-data space).  It should be at least some comfort to note 

that the geometry you learned in high school holds for the surreal world of data space, as well as 

the one you walk on.  In the example, c1 is smaller than c2 therefore that student’s measurement 

pair is assigned to cluster center 1.  The remaining student assignments are identified in the 

scatter plot by their color codes.  

 

The next step calculates the average weigh/height of the assigned students and uses these 

coordinates to reposition the cluster centers (inset (c)).  Other rounds of data distances, cluster 

assignments and repositioning are made until the cluster membership does not change (i.e., the 

centers do not move).  

 

Inset (d) shows the final groupings with the big folks (high/high) differentiated from the smaller 

folks (low/low).  By passing these results to a GIS the data space pattern (clumps of similar 

measurements) can be investigated for geographic space patterns.  

 

The positioning of these data in the real world classroom (upper left portion of inset (d)) shows a 

distinct spatial pattern between the two groups— smaller folks in front and bigger folks in the 
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rear.  Like before, you simply see these things but the computer has to derive the relationships 

(distance to similar neighbor) from a pile of numbers.  

 

What is important to note is that analysis in data space and geographic space has a lot in 

common.  In the example, both “spaces” are represented as XY coordinates— weight/height 

measurements in data space (characteristics) and longitude/latitude in geographic space 

(positioning).  Data distance is used to partition the measurements into separate groups (data 

pattern).  Geographic distance is used to partition the locations into separate groups (spatial 

pattern).  In both instances the old Pythagorean Theorem served as the procedure for measuring 

distance.  

 

So who cares?  We have gotten along for years with data analysts and mapmakers doing their 

own thing.  Maps are maps and data are data, right?  Not exactly, at least not any more… with 

the advent of the digital map, maps are data (not pictures). Information on the relative 

positioning and coincidence among mapped variables extend traditional data analysis.  Likewise, 

the digital nature of maps provides data analysis tools that enable us to “see” geographic space in 

abstract terms (decision-making) beyond traditional descriptions of precise placement of physical 

features (inventory). 

 

 
(Advanced Map Comparison Techniques) 

 

Compare Maps by the Numbers 
(GeoWorld, September 1999)    

(return to top of Topic)  
 

I bet you've seen and heard it a thousand times a speaker waves a laser pointer at a couple of 

maps and says something like "see how similar the patterns are."  But what determines 

similarity?  A few similarly shaped gobs appearing in the same general area?  Do all of the globs 

have to kind of align?  Do display factors, such as color selection, number of classes and 

thematic break-points, affect perceived similarity?  What about the areas that misalign?  

 

Like abstract art, the patterns formed by map features are subject to subjectivity.  The power of 

suggestion plays an important role and the old adage that "I wouldn't have seen it, if I hadn't 

believed it" often holds.  Suggestion can influence map interpretation. But in visual map 

comparison, it dominates.  

 

So how can we objectively assess map similarity?  Like most things GIS, it's in the numbers.  

Consider the three maps on the right side of figure 1.  Are they similar?  Is the top map more 

similar to the middle one, than the map on the bottom?  If so, how much more similar?  

 

Actually the three maps were derived from the same map surface.  Map1 identifies low response 

(lightest tone) as values below 65, medium as values in the range 65 through 70, and high as 

values over 70 (darkest tone).  Map2 extends the mid-range to 62.5 through 72.5, while Map3 

increases it even further to 60 through 75.  In reality all three maps are supposed to be tracking 

the same spatial variable.  But the categorized renderings appear radically different; or are they 



From the online book Beyond Mapping III by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy 
for educational use is granted.  
Page 13 
 

surprisingly similar?  What's your visceral vote?  

 

 
 

Figure 1. Coincidence Summary and Proximal Alignment can be used to assess the similarity 

between maps. 

 

One way to find out for certain is to overlay the two maps and note where the classifications are 

the same and where they are different.  At one extreme, the maps could perfectly coincide with 

the same conditions everywhere (identical).  At the other extreme, the conditions might be 

different everywhere.  Somewhere in between these extremes, the high and low areas could be 

swapped and the pattern invertedsimilar but opposite.  

 

Coincidence Summary generates a cross-tabular listing of the intersection of the two maps.  In 

vector analysis the two maps can be "topologically" overlaid and the areas of the resulting 

son/daughter polygons aggregated by their joint condition.  Another approach establishes a 

systematic or random set of points that uses a "point in polygon" overlay to identify/summarize 

the conditions on both maps.  

 

Raster analysis uses a similar approach but simply counts the number of cells within each 

category combination as depicted by the arrows in the figure. In the example, a 39 by 50 grid 

was used to generate a comprehensive sample set of 1,950 locations (cells).  Table 1 reports the 

coincidence summaries for the top map with the middle and bottom maps. 
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The highlighted counts along the diagonals of the table report the number of cells having the 

same classification on both maps.  The off-diagonal counts indicate disagreement.  The percent 

values in parentheses report relative coincidence.  

 

 
 

Table 1. Coincidence Summary. 

 

For example, the 100% in the first row indicates that all of "Low" areas on Map2 coincide with 

"Low" areas on Map1.  The 86% in the first column, however, notes that not all of the "Low" 

areas on Map1 are classified the same as the same as those on Map2.  The lower portion of the 

table summarizes the coincidence between Map1 and Map2.  

 

So what do all the numbers mean in user-speak? First, the "overall" coincidence percentage in 

the lower right corner gives you a general idea of how well the maps match; 83% is fairly 

similar, while 68% is not too similar.  Inspection of the individual percentages gives you a 

handle on which categories are, or are not lining-up.  A perfect match would have 100% for each 

category; a complete mismatch would have 0%.  

 

But simple coincidence summary just tells you whether things are the same or different.  One 

extension considers the thematic difference.  It notes the disparity in mismatched categories with 

a "Low/High" combination considered even less similar than a "Low/Medium" match.  
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Another procedure investigates the spatial difference, as shown in table 2.  The technique, 

termed Proximal Alignment, isolates one of the map categories (the dark-toned areas on Map3 

in this case) then generates its proximity map.  The proximity values are "masked" for the 

corresponding feature on the other map (enlarged dark-toned area on Map1 High).  The 

highlighted area on the Masked Proximity Map identifies the locations of the greatest 

misalignment.  Their relative occurrence is summarized in the lower portion of the tabular 

listing.  

 

 
 

Table 2. Proximal Alignment. 

 

So what does all this tell us in user-speak?  First, note that twenty percent of the total 

mismatches occurs more than five cells away from the nearest corresponding feature, thereby 

indicating fairly poor overall alignment.  A simple measure of misalignment can be calculated by 

weight-averaging the proximity information1*171 + 2*56 + … / 15 = 3.28.  Perfect alignment 

would result in 0, with larger values indicating progressively more misalignment.  Considering 

the dimensionality of the grid (39 x 50), a generalized proximal alignment index can be 

calculated  3.28 / (39*50)**.5 = .074.  

 

So what's the bottom line?  If you’re a GIS software provider, you should include a "big button" 

for comparing maps with your next release.  If you’re a GIS user, you should report coincidence 

percentages and alignment indices before passing comparative judgment.  If you’re a laser-

waving presenter implying your visceral interpretation, your days are numbered. 

 

 

Use Statistics to Compare Map Surfaces 
(GeoWorld, October 1999)    

(return to top of Topic)  
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While the human brain is good at lot of things, objective and detailed comparison among maps 

isn't one of them.  Quantitative techniques provide a foothold for map comparison beyond 

waving a laser-pointer over a couple of maps and boldly stating "see how similar (or dissimilar) 

the patterns are."  

 

The previous section identified a couple of techniques for comparing maps composed of discrete 

map "objects" Coincidence Summary and Proximal Alignment. Comparing map "surfaces" 

involves similar approaches, but employs different techniques taking advantage of the more 

robust nature of continuous data. 

 

Consider the two map surfaces shown on the left side of figure 1.  Are they similar, or different?  

Where are they more similar or different?  Where's the greatest difference?  How would you 

know?  In visual comparison, your eye looks back-and-forth between the two surfaces attempting 

to compare the relative "heights" at corresponding locations on the map.  After about ten of these 

eye-flickers your patience wears thin and you form a hedged opinion "not too similar."  

 

In the computer, the relative "heights" are stored as individual map values (in this case, 1380 

numbers in an analysis grid of 46 rows by 30 columns).  One thought might be to use statistical 

tests to analyze whether the data sets are "significantly different."  

 

Since map surfaces are just a bunch of spatially registered numbers, the sets of data can be 

compared by spatial coincidence (comparing corresponding values on two maps) and spatial 

partitioning (dividing the mapped data into subsets, then comparing the partitioned areas within 

one surface or between two surfaces).  

 

In this approach, GIS is used to "package" the data and pass it to standard statistical procedures 

for analysis of differences within and between data groups.  The packaging can be done in a 

variety of ways including systematic/random sampling, specified administration/management 

zones, or inferred spatial groupings.  For example, a scientist could randomly sample values for 

terrain in two watersheds then test to see if their means are significantly different.  Or a power 

company could investigate for significant change in household energy consumption for a 

neighborhood between two billing periods.  
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Figure 1. Map surfaces can be compared by statistically testing for significant differences in 

data sets, differences in spatial coincidence, or surface configuration alignment. 

 

Or a farmer could test whether there is a significant difference in the topsoil versus substrata 

potassium levels for a portion of a field.  Actually, this is the case depicted in figure 1 (Map1 = 

topsoil; Map2 = substrata potassium) and summarized in table 1.  The dark red area on the 

surface locates the partitioned area in the field.   

 

 
 

Table 1. Statistical Tests. 
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The "box-and-whisker" plots in the table identify the mean (dot), +/- standard deviation (shaded 

box) and min/max values (whiskers) for each of the four data sets (Maps1&2 and in&out of the 

Partition).  Generally speaking, if the boxes tend to align there isn't much of a difference between 

data groups (e.g., Map2_inP and Map2_outP surfaces).  If they don't align (e.g., Map1_inP and 

Map2_inP surfaces), there is a significant difference.  The plots provide useful pictures of data 

distributions and allow you to eyeball the overall differences among a set of map surfaces.  

 

The most commonly used statistical method for evaluating the differences in the means of two 

data groups is the t-test.  The right side of table 1 shows the results of a t-test comparing the 

partitioned data between Map1_inP and Map2_inP (the first and second box-whisker plots).  

 

While a full explanation of statistical tests is beyond the scope of this discussion, it is relative 

safe to say the larger the "t stat" value the greater the difference between two data groups.  The 

values for the "one- and two-tail" tests at the bottom of the table suggest that "the means of the 

two groups appear distinct and there is little chance that there is no difference between the 

groups."  

 

As with all things statistical, there are a lot of preconditions that need to be met before a t-test is 

appropriate the data must be independent and normally distributed.  The problem is that these 

conditions rarely hold for mapped data.  While the t-test example might serve as a reasonable 

instance of "blindly applying" non-spatial, statistical tests to mapped data, it suggests this 

approach is a bit shaky as it seldom provides a reliable test like it does in traditional, non-spatial 

statistics (see Author's Notes).  

 

In addition to data condition problems, statistical tests ignore the explicit spatial context of the 

data.  Comparison using percent difference, on the other hand, capitalizes on this additional 

information in map surfaces.  Table 2 shows a categorized rendering and tabular summary of the 

percent difference between the Map1 and Map2 surfaces at each grid location.  Note that the 

average difference is fairly large (76% +/- 49%), while two identical surfaces would compute to 

0% average difference with +/- 0% standard deviation.  

 

 
 

Table 2. Percent Difference. 
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The dark red areas along the center crease of the map correspond to the highlighted rows in the 

table identifying areas within +/- 33 percent difference (moderate).  That conjures up the "thirds 

rule of thumb" for comparing map surfacesif two-thirds of the map area is within one-third (33 

percent) difference, the surfaces are fairly similar; if less than one-third of the area is within 

one-third difference, the surfaces are fairly differentgenerally speaking that is.  In this case 

only about 11% of the area meets the criteria so the surfaces are "considerably" different.  

 

Another approach termed surface configuration, focuses on the differences in the localized 

trends between two map surfaces instead of the individual values.  Like you, the computer can 

"see" the bumps in the surfaces, but it does it with a couple of derived maps.  A slope map 

indicates the relative steepness while an aspect map denotes the orientation of locations along the 

surface.  You see a big bump; it sees an area with large slope values at several aspects.  You see 

a ridge; it sees an area with large slope values at a single aspect.  

 

So how does the computer see differences in the "lumpy-bumpy" configurations of two map 

surfaces?  Per usual, it involves map-ematical analysis, but in this case some fairly ugly 

trigonometry is employed (see equations at end of chapter).  Conceptually speaking, the 

immediate neighborhood around each grid location identifies a small plane with steepness and 

orientation defined by the slope and aspect maps.  The mathematician simply solves for the 

normalized difference in slope and aspect angles between the two planes (see Author's Notes).  

 

For the rest of us, it makes sense that locations with flat/vertical differences in inclination 

(Slope_Diff = 90
o
) and diametrically opposed orientations (Aspect_Diff = 180

o
) are as different 

as different can get.  Zero differences for both, on the other hand, are as similar as things can get 

(exactly the same slope and aspect).  All other slope/aspect differences fall somewhere in 

between on a scale of 0-100.  

 

The two superimposed maps at the left side of table 3 show the normalized differences in the 

slope and aspect angles (dark red being very different).  The map of the overall differences in 

surface configuration (Sur_Fig) is the average of the two maps.  Note that over half of the map 

area is classified as low difference (0-20) suggesting that the "lumpy-bumpy" areas align fairly 

well overall.  The greatest differences in surface configuration appear in the northwest portion.  

 

 
 

Table 3. Surface Configuration. 
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Does all this analysis square with your visual inspection of the Map1 and Map2 surfaces in 

figure 1?  Sort of big differences in the relative values (surface height comparison summarized 

by percent difference analysis) with smaller differences in surface shape (bumpiness comparison 

summarized by surface configuration analysis).  Or am I leading the "visually malleable" with 

quantitative analysis that lacks the comfort, artistry and subjective interpretation of laser-waving 

map comparison?  
_______________________  

Author's Notes: An extended discussion by William Huber of Quantitative Decisions on the validity of statistical 

tests and an Excel workbook containing the equations and computations leading to the t-test, percent difference and 

surface configuration analyses are available online at the "Column Supplements" page at 

http://www.innovativegis.com/basis.  
 

 
(Approaches Used in Deriving Prediction Maps) 

 

Use Scatterplots to Understand Map 
Correlation 
(GeoWorld, November 1999)    

(return to top of Topic)  
 

A continuing theme of the Beyond Mapping columns has been that "GIS maps are numbers first, 

pictures later."  The previous discussions have gone so far as to suggest that there are several 

ways to quantitatively compare spatial information Coincident Summary and Proximal 

Alignment for discrete maps (September, 1999 BM column) and Statistical Tests, Percent 

Difference and Surface Configuration for continuous map surfaces (October, 1999 BM column).  

That brings us to the next big "bungy-jump" in map analysis involving correlation and predictive 

modeling.  

 

In traditional statistics there is a wealth of procedures for investigating correlation, or "the 

relationship between variables."  The most basic of these is the scatterplot that provides a 

graphical peek at the joint responses of paired data.  It can be thought of as an extension of the 

histogram used to characterize the data distribution for a single variable.  

 

For example, the x- and y-axes in figure 1 summarize the data described in the previous section.  

Recall that Map1 identifies the spatial distribution of potassium in the topsoil of a farmer's field, 

while Map2 tracks the concentrations in the root zone.  Admittedly, this example is “a bit dirty" 

but keep in mind that a wide array of mapped data from resource managers to market forecasters 

can be used.  

 

The histograms and descriptive statistics along the axes show the individual data distributions for 

the partitioned area (dark red "glob" draped on the map surfaces).  It appears the topsoil 

concentrations in Map1 are generally higher (note the positioning of the histogram peaks; 

compare the means) and a bit more variable (note the spread of the histograms; compare the 

standard deviations).  But what about the "joint response" considering both variables at the same 

time?  Do higher concentrations in the root zone tend to occur with higher concentrations in the 
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topsoil?  Or do they occur with lower concentrations?  Or is there no discernible relationship at 

all?  

 

These questions involve the concept of correlation that tracks the extent that two variables are 

proportional to each other. At one end of the scale, termed positive correlation, the variables act 

in unison and as values of one variable increase, the values for the other make similar increases. 

The other ends, termed negative correlation, the variables are mirrored with increasing values for 

one matched by decreases in the other. Both cases indicate a strong relationship between the 

variables just one is harmonious (positive) while the other is opposite (negative). In between the 

two lies no correlation without a discernable pattern between the changes in one variable and the 

other.  

 

 
 

Figure 1. A scatterplot shows the relation between two variables by plotting the paired 

responses. 

 

Now turn your attention to the scatterplot in figure 1.  Each of the data points (small blue circle) 

represents one of the 479 grid locations within the partitioned area.  The general pattern of the 

points provides insight into the joint relationship.  If there is an upward linear trend in the data 

(like in the figure) positive correlation is indicated.  If the points spread out in a downward 

fashion there's a negative correlation.  If they seem to form a circular pattern or align parallel to 

either of the axes, a lack of correlation is noted.  

 

Now let's apply some common sense and observations about a scatterplot.  First the "strength" of 

a correlation can be interpreted by 1) the degree of alignment of the points with an upward (or 

downward) line and 2) how dispersed the points are around the line.  In the example, there 
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appears to be fairly strong positive correlation (tightly clustered points along an upward line), 

particularly if you include the scattering of points along the right side of the diagonal.  

 

But should you include them?  Or are they simply "outliers" (abnormal, infrequent observations) 

that bias your view of the overall linear trend?  Accounting for outliers is more art than science, 

but most approaches focus on the dispersion in the vicinity of the joint mean (i.e., statistical 

"balance point" of the data cloud).  The joint mean in figure 30.3 is at the intersection of the lines 

extended from the Map1 and Map2 averages.  Now concentrate on the bulk of points in this area 

and reassess the alignment and dispersion.  Doesn't appear as strong, right?  

 

A quantitative approach to identifying outliers involves a confidence ellipse. It is conceptually 

similar to standard deviation as it identifies "typical" paired responses.  In the figure, a 95% 

confidence ellipse is drawn indicating the area in the plot that accounts for the vast majority of 

the data.  Points outside the ellipse are candidates for exclusion (25 of 479 in this case) in hopes 

of concentrating on the overall trend in the data.  The orientation of the ellipse helps you 

visualize the linear alignment and its thickness helps you visualize the dispersion (pretty good on 

both counts).  

 

In addition to assessing alignment, dispersion and outliers you should look for a couple of other 

conditions in a scatterplot distinct groups and nonlinear trends.  Distinct group bias can result 

in a high correlation that is entirely due to the arrangement of separate data "clouds" and not the 

true relationships between the variables within each data group.  Nonlinear trends tend to show 

low "linear" correlation but actually exhibit strong curvilinear relationships (i.e., tightly clustered 

about a bending line).  Neither of these biases is apparent in the example data.  

 

Now concentrate on the linkage between the scatterplot and the map surfaces.  The analysis grid 

structures the linkage and enables you to "walk" between the maps and the plot.  If you click on a 

point in the scatterplot its corresponding cell location on both surfaces are highlighted.  If you 

click on a location on one of the maps its scatter plot point is highlighted.  

 

That's set the stage for interactive data analysis.  One might click on all of the outlier points and 

see if they are scattered or grouped.  If they tend to form groups there is a good chance a 

geographic explanation exists possibly explained by another data layer.  

 

Another investigative procedure is to delineate sets of points on the scatterplot that appear to 

form "fuzzy globs."  The globs indicate similar characteristics (data pattern) while the map plays 

out their spatial pattern.  In a sense, manually delineating data globs is analogous to the high-

tech, quantitative procedure termed data clustering (see Author's Notes).  In fact quantitative 

expression of the scatterplot's correlation information forms the basis for predictive 

modeling…but that's next month's story. 
_______________________  

Author's Notes: An extended discussion of data grouping and a online version of "Identifying Data Patterns" (GIS 

World, August 1998) are available online at the "Column Supplements" page at http://www.innovativegis.com/basis.  
  

 

Can Predictable Maps Work for You? 
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(GeoWorld, December 1999)    
(return to top of Topic)  

 

The last section discussed map correlation as viewed through a scatterplot.  Recall that the 

orientation of the "data cloud" indicated the nature of the relationship between the values on two 

map surfaces, while its shape showed the strength of the relationship.  

 

 
 

Figure 1. Scatterplot with correlation and regression information identified. 

 

Figure 1 should rekindle the concepts, but note the addition of the information about the 

regression line.  That brings us to the tough (more interesting?) tuff quantitative measures of 

correlation and predictive modeling.  

 

While a full treatise of the subject awaits your acceptance to graduate school, discussion of some 

basic measures might be helpful.  The correlation coefficient (denoted as "r") represents the 

linear relationship between two variables.  It can range from +1.00 (perfect positive correlation) 

to -1.00 (perfect negative correlation), with a value of 0.00 representing no correlation.  

 

Calculating "r" involves finding the "best-fitting line" that minimizes the sum of the squares of 

distances from each data point to the line, then summarizing the deviations to a single value.  

When the correlation coefficient is squared (referred to as the "R-squared" value), it identifies 

the "proportion of common variation" and measures the overall strength of the relationship.  

 

The examples in figure 2 match several scatterplots with their R-squared values.  The inset on 

the left shows four scatterplots with increasing correlation (tighter linear alignment in the data 

clouds).  The middle inset depicts data forming two separate sub-groups (distinct group bias).  In 
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this instance the high R-squared of .81 is misleading.  When the data groups are analyzed 

separately, the individual R-squared values are much weaker (.00 and .04).  

 

 
 

Figure 2. Example scatterplots depicting different data relationships. 

 

The inset on the right is an example of a data pattern that exhibits low linear correlation, but has 

a strong curvilinear relationship (nonlinear trend).  Unfortunately, dealing with nonlinear 

patterns is difficult even for the statistically adept.  If the curve is continuously increasing or 

decreasing, you might try a logarithmic transform.  If you can identify the specific function, use 

it as the line to fit.  Or, if all else fails, break the curve into segments that are better approximated 

by a series of straight lines.  

 

Regression analysis extends the concept of correlation by focusing on the best-fitted line (solid 

red lines in the examples).  The equation of the line generalizes the linear trend in the data.  Also, 

it serves as a predictive model, while its correlation indicates how good the data fit the model.  In 

the case of figure 1, the regression equation is Map2(estimated) = 28.04 + 0.572 * Map1, with an 

R-squared value of .52.  That means if you measure a potassium level of 500 in the topsoil 

expect to find about 314 in the root zone (28.04 + 0.572 * 500 = 314.04).  But how good is that 

guess in the real world?  

 

One way to evaluate the model is to "play-it-back" using the original data.  The left-side of figure 

3 shows the results for the partitioned area.  As hoped, the predicted surface is very similar to the 

actual data with an average error of only 2% and over 98% of the area within 33% difference. 

 

Model validation involves testing it on another set of data.  When applied outside the partition 

the regression model didn't fair as well an average error of 19% and only 25% of the area 

within 33% difference.  The difference surface shows you that the model is pretty good in most 

places but really blows it along the western edge (big ridge of over estimation) and part of the 

northern edge (big depression of under estimation).  Maybe those areas should be partitioned and 

separate prediction models developed for them?  Or, more likely your patience has ebbed.  
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Figure 3. Results of applying the predictive model. 

 

A few final concepts should wrap things up. First, data analysis rarely uses raw data. As 

discussed last month "outliers" are identified and eliminated. In figure 3, the dotted axis through 

the confidence ellipse suggests a somewhat steeper regression line "better fits" the bulk of the 

data. Possibly this equation is a better predictor.  

 

Some data analysts use a "roving window" (e.g., values in a 3x3 adjacent neighborhood) to 

derive a neighborhood-weighted average for each grid location before deriving a prediction 

model. This "smoothing" addresses slight misalignment in the data layers and salt-and-pepper 

conditions in some data sets. Another school of thought suggests sampling the data such that the 

distance between the samples is larger than the spatial autocorrelation as determined by 

variogram analysis (see "Uncovering the Mysteries of Spatial Autocorrelation," GIS World, 

June, 1997, page ??). The sampling interval addresses concern for dependence in the data.  

 

For most of us, however, the bottom-line lies not in debatable statistical theory but in the results. 

Regardless of technique, if model validation yields predictions are better than current guesses, 

then "predictable maps" could work for you. 
_______________________  

Author's Notes: An Excel workbook extending this discussion to segmented and localized regression is available 

online at the "Column Supplements" page at http://www.innovativegis.com/basis.  

 

Equations for "Comparing Map Surfaces" – Configuration 
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Using trigonometric relationships to establish differences in surface configuration 

 
Note: Data preparation was completed in MapCalc using an analysis grid configured as 46 rows by 30 rows (1380 map values).  

Slope (rate of change) and Aspect (direction of change) maps were derived for both the top and bottom soil potassium maps. 

 

Calculate the "normalized" difference in slope: 

 
Most grid-based GIS packages calculate % slope.  
Percent slope can be converted to degrees slope by DEGREES(ARCTAN(%slope/100).  
The difference between the two slopes is obtained by ABS(M1_DegSlope - M2_DegSlope).  
The difference in slope angles can be normalized between 0 to 100 by  
(((Diff_DegSlope - min) * 100) / (max - min)) 
where min = 0 and max = 90 for degree_slope possible range. 

 

Calculate the "normalized" difference in azimuth: 

 
Most grid-based GIS packages calculate precise aspect in degrees azimuth.  
Degrees azimuth must be converted to radians by RADIANS (Deg_Azimuth).  

The difference between two azimuths can be calculated in degrees by 
DEGREES( ACOS( SIN(Map1_RadAzimuth) * SIN(Map2_RadAzimuth) +  
COS(Map1_RadAzimuth) * COS(Map2_RadAzimuth) ) ) 

 
Normalized between 0 to 100 by (((Diff_DegAzimuth - min) * 100) / (max - min)) 
where min = 0 and max = 180 for degree_azimuth possible range. 

  

 

Spatial Data Mining Allows Users to 
Predict Maps 
(GeoWorld, January 2002)    

(return to top of Topic)  
 

Talk about the future of GIS… how about maps of things yet to come?  Sounds a bit farfetched 

but Spatial Data Mining is taking us in that direction.  For years non-spatial statistics has been 

predicting things by analyzing a sample set of data for a numerical relationship (equation) then 

applying the relationship to another set of data.  The drawbacks are that the non-approach 

doesn’t account for geographic relationships and the result is just a table of numbers.   

 

Extending predictive analysis to mapped data seems logical.  After all, maps are just organized 

sets of numbers.  And GIS enables us to link the numerical and geographic distributions of the 

data.  The past several columns have discussed how the computer can “see” spatial data 

relationships—  “descriptive techniques” for assessing map similarity, classification units and 

data zones.  The next logical step is to apply “predictive techniques” to generate extrapolative 

maps. 

 

If fact, the first time I used prediction mapping was in 1991 to extend a test market project for a 

phone company.  The customer’s address was used to geo-code sales of a new product that 

enabled two numbers with distinctly different rings to be assigned to a single phone— one for 

the kids and one for the parents.  Like pushpins on a map, the pattern of sales throughout the city 

emerged with some areas doing very well, while in other areas sales were few and far between.   
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The demographic data for the city was analyzed to calculate a prediction equation between 

product sales and census block data.  The prediction equation derived from the test market sales 

in one city was applied to another city by evaluating exiting demographics to “solve the 

equation” for a predicted sales map.  In turn the predicted map was combined with a wire-

exchange map to identify switching facilities that required upgrading before release of the 

product in the new city.  

 

To illustrate the data mining procedure, the approach can be applied to the cornfield data that has 

been focus for the past several sections.  The top portion of figure 1 shows the yield pattern for 

the field varying from a low of 39 bushels per acre (red) to a high of 279 (green).  Corn yield, 

like “sales yield,” is termed the dependent map variable and identifies the phenomena we want 

to predict. 

 

The independent map variables depicted in the bottom portion of the figure are used to uncover 

the spatial relationship— prediction equation. In this instance, digital aerial imagery will be 

used to explain the corn yield patterns.  The map on the left indicates the relative reflectance of 

red light off the plant canopy while the map on the right shows the near-infrared response (a 

form of light just beyond what we can see). 
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Figure 1. The corn yield map (top) identifies the pattern to predict; the red and near-infrared 

maps (bottom) are used to build the spatial relationship. 

 

While it is difficult for you to assess the subtle relationships between corn yield and the red and 

near-infrared images, the computer “sees” the relationship quantitatively.  Each grid location in 

the analysis frame has a value for each of the map layers— 3,287 values defining each geo-

registered map covering the 189-acre field.  

 

For example, top portion of figure 2 identifies that the example location has a “joint” condition 

of red equals 14.7 counts and yield equals 218 bu/ac.  The red lines in the scatter plot on the right 

show the precise position of the pair of map values— X= 14.7 and Y= 218.  Similarly, the near-

infrared and yield values for the same location are shown in the bottom portion of the figure.   

 

 
 

Figure 2. The joint conditions for the spectral response and corn yield maps are summarized in 

the scatter plots shown on the right. 

 

In fact the set of “blue dots” in both of the scatter plots represents data pairs for each grid 

location.  The blue lines in the plots represent the prediction equations derived through 

regression analysis.  While the mathematics is a bit complex, the effect is to identify a line that 

“best fits the data”— just as many data points above as below the line.  
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In a sense, the line sort of identifies the average yield for each step along the X-axis (red and 

near-infrared responses respectively).  Come to think of it, wouldn’t that make a reasonable 

guess of the yield for each level of spectral response?  That’s how a regression prediction is 

used… a value for red (or near-infrared) in another field is entered and the equation for the line is 

used to predict corn yield.  Repeat for all of the locations in the field and you have a prediction 

map of yield from an aerial image… but alas, if it were only that simple and exacting. 

 

A major problem is that the “r-squared” statistic for both of the prediction equations is fairly 

small (R^^2= 26% and 4.7% respectively) which suggests that the prediction lines do not fit the 

data very well.  One way to improve the predictive model might be to combine the information 

in both of the images.  The “Normalized Density Vegetation Index (NDVI)” does just that by 

calculating a new value that indicates plant vigor— NDVI= ((NIR – Red) / (NIR + Red)).  

 

Figure 3 shows the process for calculating NDVI for the sample grid location— ((121-14.7) / 

(121 + 14.7))= 106.3 / 135.7= .783.  The scatter plot on the right shows the yield versus NDVI 

plot and regression line for all of the field locations.  Note that the R^^2 value is a higher at 30% 

indicating that the combined index is a better predictor of yield.  

 

 
 

Figure 3. The red and NIR maps are combined for NDVI value that is a better predictor of yield. 

 

The bottom portion of the figure evaluates the prediction equation’s performance over the field.  

The two smaller maps show the actual yield (left) and predicted yield (right).  As you would 
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expect the prediction map doesn’t contain the extreme high and low values actually measured.  

However the larger map on the right calculates the error of the estimates by simply subtracting 

the actual measurement from the predicted value at each map location.  

 

The error map suggests that overall the yield “guesses” aren’t too bad— average error is a 2.62 

bu/ac over guess; 67% of the field is within 20 bu/ac.  Also note that most of the over estimating 

occurs along the edge of the field while most of the under estimating is scattered along curious 

NE-SW bands. 

 

While evaluating a prediction equation on the data that generated it isn’t validation, the 

procedure provides at least some empirical verification of the technique.  It suggests a glimmer 

of hope that with some refinement the prediction model might be useful in predicting yield 

before harvest.  In the next section we’ll investigate some of these refinement techniques and see 

what information can be gleamed by analyzing the error surface. 

 

 

Stratify Maps to Make Better Predictions 
(GeoWorld, February 2002)    

(return to top of Topic)  
 

The previous section described procedures for predictive analysis of mapped data. While the 

underlying theory, concerns and considerations can easily consume a graduate class for a 

semester the procedure is quite simple. The grid-based processing preconditions the maps so 

each location (grid cell) contains the appropriate data. The “shishkebab” of numbers for each 

location within a stack of maps are analyzed for a prediction equation that summarizes the 

relationships. 

 

In the example discussed last month, regression analysis was used to relate a map of NDVI 

(“normalized density vegetation index” derived from remote sensing imagery) to a map of corn 

yield for a farmer’s field. Then the equation was used to derive a map of predicted yield based on 

the NDVI values and the results evaluated for how well the prediction equation performed.  
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Figure 1. A field can be stratified based on prediction errors. 

 

The left side of figure 1 shows the evaluation procedure.  Subtracting the actual yield values 

from the predicted ones for each map location derives an Error Map.  The previous discussions 

noted that the yield “guesses” weren’t too bad— average error of 2.62 bu/ac with 67% of the 

estimates within 20 bu/ac of the actual yield.  However, some locations were as far off as 144 

bu/ac (over-guess) and –173 bu/ac (under-guess). 

 

One way to improve the predictions is to stratify the data set by breaking it into groups of similar 

characteristics.  The idea is that set of prediction equations tailored to each stratum will result in 

better predictions than a single equation for an entire area.  The technique is commonly used in 

non-spatial statistics where a data set might be grouped by age, income, and/or education prior to 

analysis.  In spatial statistics additional factors for stratifying, such as neighboring conditions 

and/or proximity, can be used. 

 

While there are several alternatives for stratifying, subdividing the error map will serve to 

illustrate the conceptual approach.  The histogram in the center of figure 1 shows the distribution 

of values on the Error Map.  The vertical bars identify the breakpoints at plus/minus one standard 

deviation and divide the map values into three strata— zone 1 of unusually high under-guesses 

(red), zone 2 of typical error (yellow) and zone 3 of unusually high over-guesses (green).  The 

map on the right of the figure locates the three strata throughout the field.  

 

The rationale behind the stratification is that the whole-field prediction equation works fairly 

well for zone 2 but not so well for zones 1 and 3.  The assumption is that conditions within zone 

1 make the equation under estimate while conditions within zone 3 cause it to overestimate.  If 

the assumption holds, one would expect a tailored equation for each zone would be better at 

predicting than an overall equation.  Figure 2 summarizes the results of deriving and applying a 

set of three prediction equations. 
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Figure 2. After stratification, prediction equations can be derived for each element. 

 

The left side of the figure illustrates the procedure.  The Error Zones map is used as a template to 

identify the NDVI and Yield values used to calculate three separate prediction equations.  For 

each map location, the algorithm first checks the value on the Error Zones map then sends the 

data to the appropriate group for analysis.  Once the data has been grouped a regression equation 

is generated for each zone. The “r-squared” statistic for all three equations (.68, .60, and .42 

respectively) suggests that the equations fit the data fairly well and ought to be good predictors.   

 

The right side of figure 2 shows the composite prediction map generated by applying the 

equations to the NDVI data respecting the zones identified on the template map.   

 

The left side of figure 3 provides a visual comparison between the actual yield and predicted 

maps.  The “stratified prediction” shows detailed estimates that more closely align with the 

actual yield pattern than the “whole-field” derived prediction map.   
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Figure 3. Stratified and whole-field predictions can be compared using statistical techniques. 

 

The error map for the stratified prediction shows that eighty percent of the estimates are within 

+/- 20 bushels per acre.  The average error is only 4 bu/ac with maximum under- and over-

estimates of –81.2 and 113, respectively.  All in all, not bad guessing of yield based on a remote 

sensing shot of the field nearly a month before the field was harvested. 

 

A couple of things should be noted from this example of spatial data mining.  First, that there is a 

myriad of other ways to stratify mapped data— 1) Geographic Zones, such as proximity to the 

field edge; 2) Dependent Map Zones, such as areas of low, medium and high yield; 3) Data 

Zones, such as areas of similar soil nutrient levels; and 4) Correlated Map Zones, such as micro 

terrain features identifying small ridges and depressions.  The process of identifying useful and 

consistent stratification schemes is an emerging research frontier in the spatial sciences. 

 

Second, the error map is key in evaluating and refining the prediction equations.  This point is 

particularly important if the equations are to be extended in space and time.  The technique of 

using the same data set to develop and evaluate the prediction equations isn’t always adequate. 

The results need to be tried at other locations and dates to verify performance.  While spatial data 

mining methodology might be at hand, good science is imperative.  

 

Finally, one needs to recognize that spatial data mining is not restricted to precision agriculture 

but has potential for analyzing relationships within almost any set of mapped data.  For example, 
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prediction models can be developed for geo-coded sales from demographic data or timber 

production estimates from soil/terrain patterns.  The bottom line is that maps are increasingly 

seen as organized sets of data that can be map-ematically analyzed for spatial relationships… we 

have only scratched the surface. 
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