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What’s Missing in Mapping? — discusses the need for identifying data dispersion as well as 
average in Thematic Mapping 

Throwing the Baby Out with the Bath Water — discusses the information lost in aggregating 
field data and assigning typical values to polygons (desktop mapping)  

Normally Things Aren’t Normal — discusses the appropriateness of using traditional “normal” 
and percentile statistics    

Correlating Maps and a Numerical Mindset — describes a Spatially Localized Correlation 
procedure for mapping the mutual relationship between two map variables 

Spatially Evaluating the T-test — illustrates the expansion of traditional math/stat procedures to 
operate on map variables to spatially solve traditional non-spatial equations  

Further Reading — three additional sections 
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______________________________ 
 

What’s Missing in Mapping?  
(GeoWorld, April 2009)    

(return to top of Topic)  
 

We have known the purpose of maps for thousands of years—precise placement of physical 

features for navigation.  Without them historical heroes might have sailed off the edge of the 

earth, lost their way along the Silk Route or missed the turn to Waterloo.  Or more recently, you 

might have lost life and limb hiking the Devil’s Backbone or dug up the telephone trunk line in 

your neighborhood.   

 

Maps have always told us where we are, and as best possible, what is there.  For the most part, 

the historical focus of mapping has been successfully automated.  It is the “What” component of 

mapping that has expanded exponentially through derived and modeled maps that characterize 

geographic space in entirely new ways.  Digital maps form the building blocks and map-ematical 

tools provide the cement in constructing more accurate maps, as well as wholly new spatial 

expressions. 
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For example, consider the left-side of figure 1 that shows both discrete (Contour) and continuous 

(Surface) renderings of the Elevation gradient for a project area.  Not so long ago the only 

practical way of mapping a continuous surface was to force the unremitting undulations into a set 

of polygons defined by a progression of contour interval bands.  The descriptor for each of the 

polygons is an interval range, such as 500-700 feet for the lowest contour band in the figure.  If 

you had to assign a single attribute value to the interval, it likely would be the middle of the 

range (600).   

 

 
 

Figure 1. Visual assessment of the spatial coincidence between a continuous Elevation surface 

and a discrete map of Districts. 

 

But does that really make sense?  Wouldn’t some sort of a statistical summary of the actual 

elevations occurring within a contour polygon be a more appropriate representation?  The 

average of all of the values within the contour interval would seem to better characterize the 

“typical elevation.”   For the 500-700 foot interval in the example, the average is only 531.4 feet 

which is considerably less than the assumed 600 foot midpoint of the range. 

 

Our paper map legacy has conditioned us to the traditional contour map’s interpretation of fixed 
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interval steps but that really muddles the “What” information.  The right side of figure 1 tells a 

different story.  In this case the polygons represent seven Districts that are oriented every-which-

way and have minimal to no relationship to the elevation surface.  It’s sort of like a surrealist 

Salvador Dali painting with the Districts melted onto the Elevation surface indentifying the 

coincident elevation values.  Note that with the exception of District #1, there are numerous 

different elevations occurring within each district’s boundary.   

 

One summary attribute would be simply noting the Minimum/Maximum values in a manner 

analogous to contour intervals.  Another more appropriate metric would be to assign the Median 

of the values identifying the middle value for a metric that divides the total frequency into two 

halves.  However the most commonly used statistic for characterizing the “typical condition” is a 

simple Average of all the elevation numbers occurring within each district.  The “Thematic 

Mapping” procedure of assigning a single value/color to characterize individual map features 

(lower left-side of figure 2) is fundamental to many GIS applications, letting decision-makers 

“see” the spatial pattern of the data.   

 

The discrete pattern, however, is a generalization of the actual data that reduces the continuous 

surface to a series of stepped mesas (right-side of figure 2).  In some instances, such as District 

#1 where all of the values are 500, the summary to a typical value is right on.  On the other hand, 

the summaries for other districts contain sets of radically differing values suggesting that the 

“typical value” might not be very typical.  For example, the data in District #2 ranges from 500 

to 2499 (valley floor to the top of the mountain) and the average of 1539 is hardly anywhere, and 

certainly not a value supporting good decision-making. 

 

So what’s the alternative?  What’s better at depicting the “What component” in thematic 

mapping?  Simply stated, an honest map is better.  Basic statistics uses the Standard Deviation 

(StDev) to characterize the amount dispersion in a data set and the Coefficient of Variation 

(Coffvar= [StDev/Average] *100) as a relative index.  Generally speaking, an increasing Coffvar 

index indicates increasing data dispersion and a less “typical” Average— 0 to 10, not much data 

dispersion; 10-20, a fair amount; 20-30, a whole lot; and >30, probably too much dispersion to 

be useful (apologies to statisticians among us for the simplified treatise and the generalized but 

practical rule of thumb).  In the example, the thematic mapping results are good for Districts #1, 

#3 and #6, but marginal for Districts #5, #7 and #4 and dysfunctional for District #2, as its 

average is hardly anywhere.   

 

So what’s the bottom line?  What’s missing in traditional thematic mapping?  I submit that a 

reasonable and effective measure of a map’s accuracy has been missing (map “accuracy” is 

different from “precision, ” see Authors Note).  In the paper map world one can simply include 

the Coffvar index within the label as shown in left-side of figure 2.  In the digital map world a 

host of additional mechanisms can be used to report the dispersion, such as mouse-over pop-ups 

of short summary tables like the ones on the right-side of figure 2.   

 



 
From the online book Beyond Mapping IV by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to 
copy for educational use is granted.  
Page 4 
 
 

 
 

Figure 2. Characterizing the average Elevation for each District and reporting how typical the 

typical Elevation value is. 

 

Another possibility could be to use the brightness gun to track the Coffvar—with the display 

color indicating the average value and the relative brightness becoming more washed out toward 

white for higher Coffvar indices.  The effect could be toggled on/off or animated to cycle so the 

user sees the assumed “typical” condition, then the Coffvar rendering of how typical the typical 

really is.  For areas with a Coffvar greater than 30, the rendering would go to white.  Now that’s 

an honest map that shows the best guess of typical value then a visual assessment of how typical 

the typical is—sort of a warning that use of shaky information may be hazardous to you 

professional health. 

 

As Geotechnology moves beyond our historical focus on “precise placement of physical features 

for navigation” the ability to discern the good portions of a map from less useful areas is critical.  

While few readers are interested in characterizing average elevation for districts, the increasing 

wealth of mapped data surfaces is apparent— from a realtor wanting to view average home 

prices for communities, to a natural resource manager wanting to see relative habitat suitability 

for various management units, to a retailer wanting to determine the average probability of 
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product sales by zip codes, to policemen wanting to appraise typical levels of crime in 

neighborhoods, or to public health officials wanting to assess air pollution levels for jurisdictions 

within a county.  It is important that they all “see” the relative accuracy of the “What 

component” of the results in addition to the assumed average condition.        

_________________________ 
Author’s Note: see Beyond Mapping Compilation series book IV, Topic 5, Section 5, “How to Determine Exactly 

‘Where Is What’” for a discussion of the difference between map accuracy and precision.  

 

  

Throwing the Baby Out with the Bath 
Water  
(GeoWorld, November 2007)  

(return to top of Topic)  

 

The previous section first challenged the appropriateness of the ubiquitous assumption that all 

spatial data is Normally Distributed.  This section takes the discussion to new heights (or is it 

lows?) by challenging the use of any scalar central tendency statistic to represent mapped data.   

 

Whether the average or the median is used, a robust set of field data is reduced to a single value 

assumed to be same everywhere throughout a parcel.  This supposition is the basis for most 

desktop mapping applications that takes a set of spatially collected data (parts per million, 

number of purchases, disease occurrences, crime incidence, etc.), reduces all of the data to a 

single value (total, average, median, etc.) and then “paints” a fixed set of polygons with vibrant 

colors reflecting the scalar statistic of the field data falling within each polygon.   

 

For example, the left side of figure 1 depicts the position and relative values of some field 

collected data; the right side shows the derived spatial distribution of the data for an individual 

reporting parcel.  The average of the mapped data is shown as a superimposed plane “floating at 

average height of 22.0” and assumed the same everywhere within the polygon.  But the data 

values themselves, as well as the derived spatial distribution, suggest that higher values occur in 

the northeast and lower values in the western portion. 

 

The first thing to notice in figure 1 is that the average is hardly anywhere, forming just a thin 

band cutting across the parcel.  Most of the mapped data is well above or below the average.  

That’s what the standard deviation attempts to tell you—just how typical the computed typical 

value really is.  If the dispersion statistic is relatively large, then the computed typical isn’t 

typical at all.  However, most desktop mapping applications ignore data dispersion and simply 

“paint” a color corresponding to the average regardless of numerical or spatial data patterns 

within a parcel.    
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Figure 1.  The average of a set of interpolated mapped data forms a uniform spatial distribution 

(horizontal plane) in continuous 3D geographic space. 

______________________________ 

 

 
 

Figure 2.  Spatial distributions and superimposed average planes for two adjacent parcels. 
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Figure 2 shows how this can get you into a lot of trouble.  Assume the data is mapping an 

extremely toxic chemical in the soil that, at high levels, poses a serious health risk for children.  

The mean values for both the West (22.0) and the East (28.2) reporting parcels are well under the 

“critical limit” of 50.0.  Desktop mapping would paint both parcels a comfortable green tone, as 

their typical values are well below concern.  Even if anyone checked, the upper-tails of the 

standard deviations don’t exceed the limit (22.0 + 18.7= 40.7 and 28.2 + 19.8= 48.0).  So from a 

non-spatial perspective, everything seems just fine and the children aren’t in peril.  

 

Figure 3, however, portrays a radically different story.  The West and East map surfaces are 

sliced at the critical limit to identify areas that are above the critical limit (red tones).  The high 

regions, when combined, represent nearly 15% of the project area and likely extend into other 

adjacent parcels.  The aggregated, non-spatial treatment of the spatial data fails to uncover the 

pattern by assuming the average value was the same everywhere within a parcel.  

 

 
 

Figure 3.  Mapping the spatial distribution of field data enables discovery of important 

geographic patterns that are lost when the average is assigned to entire spatial objects. 

 

Our paper mapping legacy leads us to believe that the world is composed of a finite set of 

discrete spatial objects—county boundaries, administrative districts, sales territories, vegetation 

parcels, ownership plots and the like.  All we have to do is color them with data summaries.  Yet 

in reality, few of these groupings provide parceling that reflects inviolate spatial patterns that are 

consistent over space and time with every map variable.  In a sense, a large number of GIS 

applications “throw the baby (spatial distribution) out with the bath water (data)” by reducing 

detailed and expensive field data to a single, maybe or maybe not, typical value. 
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Normally Things Aren’t Normal  
(GeoWorld, September 2007)  

(return to top of Topic)  

 

No matter how hard you have tried to avoid the quantitative “dark” side of GIS, you likely have 

assigned the average (Mean)  to a set of data while merrily mapping it.  It might have been the 

average account value for a sales territory, or the average visitor days for a park area, or the 

average parts per million of phosphorous in a farmer’s field.  You might have even calculated the 

Standard Deviation to get an idea of how typical the average truly was. 

 

 
 

Figure 1. Characterizing data distribution as +/- 1 Standard Deviation from the Mean. 

 

But there is a major assumption every time you map the average—that the data is Normally 

Distributed.  That means its histogram approximates the bell curve shape you dreaded during 

grading of your high school assignments.  Figure 1 depicts a standard normal curve applied to a 

set of spatially interpolated animal activity data.  Notice that the fit is not too good as the data 

distribution is asymmetrical—a skewed condition typical of most data that I have encountered in 

over 30 years of playing with maps as numbers.  Rarely are mapped data normally distributed, 

yet most map analysis simply sallies forth assuming that it is. 

 

A key point is that the vertical axis of the histogram for spatial data indicates geographic area 

covered by each increasing response step along the horizontal axis.  If you sum all of the 
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piecemeal slices of the data it will equal the total area contained in the geographic extent of a 

project area.  The assumption that the areal extent is symmetrically distributed in a declining 

fashion around the midpoint of the data range hardly ever occurs.  The norm is ill-fitting curves 

with infeasible “tails” hanging outside the data range like the baggy pants of the teenagers at the 

mall.   

 

As “normal” statistical analysis is applied to multiple skewed data sets (the spatial data norm) 

comparative consistency is lost.  While the area under the standard normal curve conforms to 

statistical theory, the corresponding geographic area varies widely from one map to another.   

 

Figure 2 depicts an alternative technique involving percentiles.  The data is rank-ordered (either 

ascending or descending) and then divided into Quartiles with each step containing 25% of the 

data.  The Median identifies the breakpoint with half of the data below and half above.  

Statistical theory suggests that the mean and median align for the ideal normal distribution.  In 

this case, the large disparity (22.0 versus 14.6) confirms that the data is far from normally 

distributed and skewed toward lower values since the median is less than the mean.  The bottom 

line is that the mean is over-estimating the true typical value in the data (central tendency). 

 

 
 

Figure 2. Characterizing data distribution as +/- 1 Quartile from the Median. 

 

Notice that the quartile breakpoints vary in width responding to the actual distribution of the 

data.  The interpretation of the median is similar to that of the mean in that it represents the 

central tendency of the data.  In an analogous manner, the 1
st
 to 3

rd
 quartile range is analogous to 

+/- 1 standard deviation in that it represents the typical data dispersion about the typical value. 
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What is different is that the actual data distribution is respected and the results always fit the data 

like a glove.  Figure 3 maps the unusually low (blue) and high (red) tails for both approaches—

traditional statistics (a) and percentile statistics (b).  Notice in inset a) that the low tail is 

truncated as the fitted normal curve assumes that the data can go negative, which is an infeasible 

condition for most mapped data.  In fact most of the low tail is lost to the infeasible condition, 

effectively misrepresenting the spatial pattern of the unusually low areas.  The 2D discrete maps 

show the large discrepancy in the geographic patterns.    

 

 
 

Figure 3. Geographic patterns resulting from the two thematic mapping techniques. 
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The astute reader will recognize that the percentile statistical approach is the same as the “Equal 

Counts” display technique used in thematic mapping.  The percentile steps could even be 

adjusted to match the + /- 34.1, 13.6 and 2.1% groupings used in normal statistics.  Discussion in 

the next section builds on this idea to generate a standard variable map surface that identifies just 

how typical each map location is—based on the actual data distribution, not an ill-fitted standard 

normal curve …pure heresy. 

 

 

Correlating Maps and a Numerical 
Mindset  
(GeoWorld, May 2011)  

(return to top of Topic)  

 

The previous section discussed a technique for comparing maps, even if they were “apples and 

oranges.”  The approach normalized the two sets of mapped data using the Standard Normal 

Variable equation to translate the radically different maps into a common “mixed-fruit” scale for 

comparison. 

 

Continuing with this statistical comparison theme (maps as numbers—bah, humbug), one can 

consider a measure of linear correlation between two continuous quantitative map surfaces.  A 

general dictionary definition of the term correlation is “mutual relation of two or more things” 

that is expanded to its statistical meaning as “the extent of correspondence between the ordering 

of two variables; the degree to which two or more measurements on the same group of elements 

show a tendency to vary together.” 

 

So what does that have to with mapping?  …maps are just colorful images that tell us what is 

where, right?  No, today’s maps actually are organized sets of number first, pictures later.  And 

numbers (lots of numbers) are right down statistic’s alley.  So while we are severely challenged 

to “visually assess” the correlation among maps, spatial statistics, like a tireless puppy, eagerly 

awaits the opportunity. 

 

Recall from basic statistics, that the Correlation Coefficient (r) assesses the linear relationship 

between two variables, such that its value falls between -1< r < +1.  Its sign indicates the 

direction of the relationship and its magnitude indicates the strength.  If two variables have a 

strong positive correlation, r is close to +1 meaning that as values for x increase, values for y 

increase proportionally.  If a strong negative correlation exits, r is close to -1 and as x increases, 

the values for y decrease. 

 

A perfect correlation of +1 or -1 only occurs when all of the data points lie on a straight line.  If 
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there is no linear correlation or a weak correlation, r is close to 0 meaning that there is a random 

or non-linear relationship between the variables.  A correlation that is greater than 0.8 is 

generally described as strong, whereas a correlation of less than 0.5 is described as weak. 

 

The Coefficient of Determination (r 
2
) is a related statistic that summarizes the ratio of the 

explained variation to the total variation.  It represents the percent of the data that is the closest to 

the line of best fit and varies from 0 <  r 
2
 < 1.  It is most often used as a measure of how certain 

one can be in making predictions from the linear relationship (regression equation) between 

variables. 

 

With that quickie stat review, now consider the left side of figure 1 that calculates the correlation 

between Elevation and Slope maps discussed in the last section.  The gridded maps provide an 

ideal format for identifying pairs of values for the analysis.  In this case, the 625 Xelev and Yslope 

values form one large table that is evaluated using the correlation equation shown.   

 

 
 

Figure 1. Correlation between two maps can be evaluated for an overall metric (left side) or for 

a continuous set of spatially localized metrics (right side). 
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The spatially aggregated result is r = +0.432, suggesting a somewhat weak overall positive linear 

correlation between the two map surfaces.  This translates to r 
2
 = 0.187, which means that only 

19% of the total variation in y can be explained by the linear relationship between Xelev and 

Yslope.  The other 81% of the total variation in y remains unexplained which suggests that the 

overall linear relationship is poor and does not support useful regression predictions.   

 

The right side of figure 1 uses a spatially disaggregated approach that assesses spatially localized 

correlation.  The technique uses a roving window that identifies the 81 value pairs of Xelev and 

Yslope within a 5-cell reach, then evaluates the equation and assigns the computed r value to the 

center position of the window.  The process is repeated for each of the 625 grid locations. 

 

For example, the spatially localized result at column 17, row 10 is r = +0.562 suggesting a fairly 

strong positive linear correlation between the two maps in this portion of the project area.  This 

translates to r 
2
 = 0.316, which means that nearly a third of the total variation in y can be 

explained by the linear relationship between Xelev and Yslope.   

 

 
 

Figure 2. Spatially aggregated correlation provides no spatial information (top), while spatially 

localized correlation “maps” the direction and strength of the mutual relationship between two 

map variables (bottom) 
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Figure 2 depicts the geographic distributions of the spatially aggregated correlation (top) and the 

spatially localized correlation (bottom).  The overall correlation statistic assumes that the r = 

+0.432 is uniformly distributed thereby forming a flat plane.    

      

 Spatially localized correlation, on the other hand, forms a continuous quantitative map surface.  

The correlation surrounding column 17, row 10 is r = +0.562 but the northwest portion has 

significantly higher positive correlations (red with a maximum of +0.971) and the central portion 

has strong negative correlations (green with a minimum of -0.568).  The overall correlation 

primarily occurs in the southeastern portion (brown); not everywhere.  

 

The bottom-line of spatial statistics is that it provides spatial specificity for many traditional 

statistics, as well as insight into spatial relationships and patterns that are lost in spatially 

aggregated of non-spatial statistics.  In this case, it suggests that the red and green areas have 

strong footholds for regression analysis but the mapped data needs to be segmented and separate 

regression equations developed.  Ideally, the segmentation can be based on existing geographic 

conditions identified through additional grid-based map analysis.   

 

It is this “numerical mindset of maps” that is catapulting GIS beyond conventional mapping and 

traditional statistics beyond long-established spatially aggregated metrics—the joint analysis of 

the geographic and numeric distributions inherent in digital maps provides the springboard. 

 

 

Spatially Evaluating the T-test  
(GeoWorld, April 2013)  

(return to top of Topic)  

 

The historical roots of map-ematics are in characterizing spatial patterns formed by the relative 

positioning of discrete spatial objects—points, lines, and polygons.  However, Spatial Data 

Mining has expanded the focus to the direct application of advanced statistical techniques in the 

quantitative analysis of spatial relationships that consider continuous geographic space.   

 

From this perspective, grid-based data is viewed as characterizing the spatial distribution of map 

variables, as well as the data’s numerical distribution.  For example, in precision agriculture GPS 

and yield monitors are used to record the position of a harvester and the current yield volume 

every second as it moves through a field (figure 1).  These data are mapped into the grid cells 

comprising the analysis frame geo-registered to the field to generate the 1997 Yield and 1998 

Yield maps shown in the figure (3,289 50-foot grid cells covering a central-pivot field in 

Colorado).   

 

The deeper green appearance of the 1998 map indicates greater crop yield over the 1997 
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harvest—but how different is the yield between the two years?  …where are there greatest 

differences?  …are the differences statistically significant?       

 

 
 

Figure 1. Precision Agriculture yield maps identify the yield volume harvested from each grid 

location throughout a field.  These data can be extracted using a “roving window” to form a 

localized subset of paired values surrounding a focal location. 

 

Each grid cell location identifies the paired yield volumes for the two years.  The simplest 

comparison would be to generate a Difference map by simply subtracting them.  The calculated 

difference at each location would tell you how different the yield is between the two years and 

where the greatest differences occur.  But it doesn’t go far enough to determine if the differences 

are “significantly different” within a statistical context.   

 

An often used procedure for evaluating significant difference is the paired T-test that assesses 

whether the means of two groups are statistically different.  Traditionally, an agricultural 

scientist would sample several locations in the field and apply the T-test to the sampled data.  

But the yield maps in essence form continuous set of geo-registered sample plots covering the 

entire field.  A T-test could be evaluated for the entire set of 3,289 paired yield values (or a 
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sampled sub-set) for an overall statistical assessment of the difference. 

 

However, the following discussion suggests a different strategy enabling the T-test concept to be 

spatially evaluated to identify 1) a continuous map of localized T-statistic metrics and 2) a binary 

map the T-test results.  Instead of a single scalar value determining whether to accept or reject 

the null hypothesis for an entire field, the spatially extended statistical procedure identifies where 

it can be accepted or rejected—valuable information for directing attention to specific areas.      

 

The key to spatially evaluating the T-test involves an often used procedure involving the 

statistical summary of values within a specified distance of a focal location, termed a “roving 

window.”  The lower portion of figure 1 depicts a 5-cell roving window (73 total cells) centered 

on column 33, row 53 in the analysis frame.  The pair of yield values within the window is 

shown in the Excel spread sheet (columns A and B) on the right side of the figure 1. 

 

 
 

Figure 2. The T-statistic for the set of paired map values within a roving window is calculated by 

dividing the Mean of the Difference to the Standard Deviation of the Mean Differences divided 

by the number of paired values. 

 

Figure 2 shows these same data and the procedures used to solve for the T-statistic within the 
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localized window.  They involve the ratio of the “Mean of the differences” to a normalized 

“Standard Deviation of the differences.”  The equation and solution steps are— 
 

TStatistic = dMean / ( dStdev / Sqrt(n) ) 
 
Step 1. Calculate the difference (di = yi − xi) between the two values for each pair.  
Step 2. Calculate the mean difference of the paired observations, dAvg. 
Step 3. Calculate the standard deviation of the differences, dStdev. 
Step 4. Calculate the T-statistic by dividing the mean difference between the paired observations 
by the standard deviation of the difference divided by the square root of the number of paired 
values— TStatistic = dAvg / ( dStdev   / Sqrt(n) ). 

 

One way to conceptualize the spatial T-statistic solution is to visualize the Excel spreadsheet 

moving throughout the field (roving window), stopping for an instant at a location, collecting the 

paired yield volume values within its vicinity (5-cell radius reach), pasting these values into 

columns A and B, and automatically computing the “differences” in column C and the other 

calculations.  The computed T-statistic is then stored at the focal location of the window and the 

procedure moves to the next cell location, thereby calculating the “localized T-statistic” for every 

location in the field. 

 

However, what really happens in the grid-based map analysis solution is shown in figure 3.  

Instead of a roving Excel solution, steps 1 - 3 are derived as a separate map layers using 

fundamental map analysis operations.  The two yield maps are subtracted on a cell-by-cell basis 

and the result is stored as a new map of the Difference (step 1).  Then a neighborhood analysis 

operation is used to calculate and store a map of the “average of the differences” within a roving 

5-cell window (step 2).  The same operation is used to calculate and store the map of localized 

“standard deviation of the differences” (step 3).     

 

The bottom-left portion of figure 3 puts it all together to derive the localized T-statistics (step 4).  

Map variables of the Mean and StDev of the differences (both comprised of 3,289 geo-registered 

values) are retrieved from storage and the map algebra equation in the lower-left is solved 3,289 

times— once for each map location in the field.  The resultant T-statistic map displayed in the 

bottom-right portion shows the spatial distribution of the T-statistic with darker tones indicating 

larger computed values (see author’s note 1).   

 

The T-test map is derived by simply assigning the value 0 = no significant difference (yellow) to 

locations having values less than the critical statistic from a T-table; and by assigning 1= 

significant difference (black) to locations with larger computed values. 
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Figure 3. The grid-based map analysis solution for T-statistic and T-test maps involves 

sequential processing of map analysis operations on geo-registered map variables, analogous to 

traditional, non-spatial algebraic solutions. 

 

The idea of a T-test map at first encounter might seem strange.  It concurrently considers the 

spatial distribution of data, as well as its numerical distribution in generating a new perspective 

of quantitative data analysis (dare I say a paradigm shift?).  While the procedure itself has 

significant utility in its application, it serves to illustrate a much broader conceptual point— the 

direct extension of the structure of traditional math/stat to map analysis and modeling.  

 

Flexibly combining fundamental map analysis operations requires that the procedure accepts 

input and generates output in the same gridded format.  This is achieved by the geo-registered 

grid-based data structure and requiring that each analytic step involve— 

 

 retrieval of one or more map layers from the map stack,  

 manipulation that applies a map-ematical operation to that mapped data,  

 creation of a new map layer comprised of the newly derived map values, and  

 storage of that new map layer back into the map stack for subsequent processing.  

M:/BeyondMappingSeries/Beyondmapping_IV/Topic4/BM_IV_T4_files/image028.png
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The cyclical nature of the retrieval-manipulation-creation-storage processing structure is 

analogous to the evaluation of “nested parentheticals” in traditional algebra.  The logical 

sequencing of primitive map analysis operations on a set of map layers (a geo-registered “map 

stack”) forms the map analysis and modeling required in quantitative analysis of mapped data 

(see author’s note 2).  As with traditional algebra, fundamental techniques involving several 

basic operations can be identified, such as T-statistic and T-test maps, which are applicable to 

numerous research and applied endeavours.  

 

The use of fundamental map analysis operations in a generalized map-ematical context 

accommodates a variety of analyses in a common, flexible and intuitive manner.  Also, it 

provides a familiar mathematical context for conceptualizing, understanding and communicating 

the principles of map analysis and modeling— the SpatialSTEM framework.   

_____________________________ 
Author’s Notes: 1) an animated slide for communicating the spatial T-test concept, see 

www.innovativegis.com/basis/MapAnalysis/Topic30/Spatial_Ttest.ppt.  2) See 

www.innovativegis.com/basis/Papers/Online_Papers.htm  for a link to an early paper “A Mathematical Structure 

for Analyzing Maps.”  

  
_____________________ 

 

Further Online Reading: (Chronological listing posted at www.innovativegis.com/basis/BeyondMappingSeries/) 
 

Get a Consistent Statistical Picture — describes creation of a Standardized Map Variable surface using Median and 
Quartile Range (October 2007) 

Comparing Apples and Oranges — describes a Standard Normal Variable (SNV) procedure for normalizing maps for 
comparison (April 2011)  

Breaking Away from Breakpoints — describes the use of curve-fitting to derive continuous equations for suitability 
model ratings (June 2011) 
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