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(Advanced Concepts in Spatial Dependency)

Move Beyond a Map Full of Errors

(GeoWorld, March 1997)
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Previous discussion (February 1997 BM column) described a procedure, termed “Residual
Analysis,” for checking the reliability of maps generated from field samples, such as a map of
phosphorous levels derived from a set of soil samples. The data could have as easily been lead
concentrations in an aquifer from a set of sample wells, or any other variable that forms a
gradient in geographic space for that matter. The evaluation procedure suggested holding back
some of the samples as a test set to “empirically verify” the estimated value at each location.
Keep in mind, if you don’t attempt to verify, then you are simply accepting the derived map as a
perfect rendering of reality (and blind faith isn’t a particularly a good basis for visual analysis of
mapped data). The difference between a mapped “guess” (interpolated estimate) and “what is”
(actual measurement) is termed a residual.

A table of all the residuals for a test set is summarized to determine the overall accuracy of an
interpolated map. The residual analysis described last time determined that the Kriging
interpolation procedure had the closest predictions to those of the example test set. Its
predictions, on average, were only 3.3 units off, whereas the other techniques of Inverse Distance
and Minimum Curvature were considerably less accurate (5.1 and 10.5, respectively). The use of
an arithmetic average for spatial prediction was by far the worst with an average boo-boo of 22.2
for each guess. The residual table might have identified the relative performance of the various
techniques, but it failed to identify where a map is likely predicting too high or too low— that’s
the role of a residual map.

The table in Figure 1 shows the actual and estimated values from Kriging for each test location,
with their residuals shown in parentheses. The posted values on the 3-D surface locate the
positioning of the residual values.
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Figure 1. Map of errors from the Kriging interpolation technique.

For example, the value 1 posted in the northeast corner identifies the residual for test sample
#19; the 4 to its right identifies the residual for test sample #25 along the eastern edge of the
field. The map of the residuals was derived by spatially interpolating the set of residuals. The
three-dimensional rendering shows the residual surface, while the 2-D map shows 1-unit
contours of error from -9 (under guessed by nine) to 4 (over guessed by four). The thick, dark
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lines in both plots locates the zero residual contour— locations believed to be right on target.
The darker tones identify areas of overestimates, while the lighter tones identify areas of
underestimates.

As explained earlier, the sum of the residuals (-28) indicates a overall tendency of the Kriging
technique to underestimate the data used in this example. The predominance of lighter tones in
the residual map spatially supports this overall conclusion. While the underestimated area occurs
throughout the center of the field, it appears that Kriging’s overestimates occur along the right
(east), bottom (south) and the extreme upper left (northwest) and upper right (northeast) corners.

The upper right portion (northeast) of the error map is particularly interesting. The two -9
“holes” for test samples #20 and #24 quickly rise to the 1 and 4 “peaks” for samples #19 and
#25. Such wide disparities within close proximity of each other (steep slopes in 3-D and tight
contour lines in 2-D) indicate areas of wildly differing interpolation performance. It’s possible
that something interesting is going on in the northeast and we ought to explore a bit further.
Take a look at the data in the table. The four points represent areas with the highest responses
(65, 56, 70 and 78). Come to think of it, a residual of 1 on an estimate of 64 for sample #19
really isn’t off by much (only 1.5%). And its underestimated neighbor’s of 9 on 65 (sample #20)
isn’t too bad either (14%).

Maybe a map of “normalized” residuals might display the distribution of error in a more useful
form. What do you think? Are you willing to “go the distance” with the numbers? Or simply
willing to “click” on an icon in your GIS, sit back, and blindly enjoy the colorful renderings of
automated mapping. At very least, the discussions on sampling and assessing interpolation
results should have taken your thoughts “beyond pretty pictures” toward “pretty useful mapped
data”... remember, all GIS maps are organized sets of numbers and those numbers might be
trying to tell you something.

Comparing Map Errors

(GeoWorld, April 1997)
(return to top of Topic)

The previous section challenged you to consider what advantage a normalized map of residuals
might have. Recall that an un-normalized map was generated from the boo-boos (more formally
termed “residuals’) uncovered by comparing interpolated estimates with a test set of known
measurements. Numerical summaries of the residuals provided insight into the overall
interpolation performance, whereas the map of residuals showed where the guesses were likely
high and where they were likely low.

The map on the left side of figure 1 is the “plain vanilla” version of the error map discussed in
the previous section. The one on the right is the normalized version. See any differences or
similarities? At first glance, the sets of lines seem to form radically different patterns. A closer
look reveals that the patterns of the darker tones are identical. So what gives?
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First of all, let’s consider how the residuals were normalized. The arithmetic mean of the test set
(28) was used as the common reference. For example, test location #17 estimated 2 while its
actual value was 0, resulting in an overestimate of 2 (2-0=2). This simple residual is translated
into a normalized value of 7.1 by computing (0-2)/28)*100= 7.1, a signed (+ or -) percentage of
the “typical” test value. Similar calculations for the remaining residuals brings the entire test set
in line with its typical, then a residual map is generated.
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Figure 1. Comparison of error maps (2-D) using Absolute and Normalized Kriging residual
values.

Now let’s turn our attention back to the maps. As the techy-types among you guessed, the
spatial pattern of interpolation error is not effected by normalization (nor is its numerical
distribution)— all normalizing did was re-scale the map surface. The differences you detect in
the line patterns are simply artifacts of different horizontal “slices” through the two related map
surfaces. Whereas a 5% contour interval is used in the normalized version, a contour interval of
1 is used in the absolute version. The common “zero contour” (break between the two tones) in
both maps have an identical pattern, as would be the case for any common slice (relative contour
step).

Ok... but if normalizing doesn’t change a map surface, why would anyone go to all the extra
effort? Because normalizing provides the consistent referencing and scaling needed for
comparison among different data sets. You can’t just take a couple of maps, plop them on a light
table, and start making comparative comments. Everyone knows you have to adjust the map
scales so they will precisely overlay (spatial registration). In an analogous manner, you have to
adjust their “thematic” scales as well. That’s what normalization does.

Now visually compare magnitude and pattern of error between the Kriging and the Average
surfaces in figure 2. A horizontal plane aligning at zero on the Z-axis would indicate a “perfect”
residual surface (all estimates were exactly the same as their corresponding test set
measurements). The Kriging plot on the left is relatively close to this ideal which confirms that
the technique is pretty good at spatially predicting the sampled variable. The surface on the right

identifying the “whole field” Average technique shows a much larger magnitude of error
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(surface deflection from Z=0). Now note the patterns formed by the light and dark blobs on
both map surfaces. The Kriging overestimates (dark areas) are less pervasive and scattered along
the edges of the field. The Average overestimates occur as a single large blob in the
southwestern half of the field.

1
.

= ]

I

sfay i feaaa s

I}

e ter

e D DT - - TF —aF - EF 7 BE YRT fad and
4 L

RH"‘--\.H_ _,-""l—-- ’ o, .—d""'-'f-
— ME _- ~_MNE__-

I wd=
LRIG RESIDALS © NORMALIZEDN AVERAGE RESIDUALS ¢ MNORMALLIETY

Figure 2. Comparison of Residual Map Surfaces (3-D) Using Residual Values Derived by
Kriging, and Average Interpolation Techniques.

What do you think you would get if you were to calculate the volumes contained within the light
and dark regions? Would their volumetric difference have anything to do with their Average
Unsigned Residual values in the residual table discussed a couple of articles ago? What
relationship does the Normalized Residual Index have with the residual surfaces? ...bah! This
map-ematical side of GIS really muddles its comfortable cartographic side— bring on the
colorful maps at megahertz speed and damn the details.

(Point Sampling Considerations)

What's the Point?

(GeoWorld, December 1996)
(return to top of Topic)

GIS’s roots lie in computer mapping and spatial database management; however, for better or
worse, more map-ematical applications are rapidly emerging. One such extension involves an
excursion into the surrealistic realm of point sampling. For example, a soil nutrient map of the
relative amounts of phosphorous throughout a farmer’s field can be derived from a set of soil
cores (a.k.a., point samples). Whereas the bulk of digital maps arise by the direct encoding of
point, line and areal features, point sampling uses a series of dispersed discrete samples to
characterize a continuous distribution of a mapped variable. The nature of the maps derived by
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the two approaches is radically different— a set of “discrete objects” for encoded maps versus a
“continuous statistical estimate” for a spatially interpolated map.

The reliability of an encoded map primarily depends on the accuracy of the source document and
the fidelity of the digitizer— which in turn is a function of the caffeine level of the prefrontal-
lobotomized hockey puck pusher (sic). It’s at its highest when GPS is used for “feet-down”
digitizing as you stroll throughout a field and trip over a physical object. The reliability of a map
based on point sampling, however, depends on the existence of spatial dependency within the
data, the sampling design employed, and the interpolation algorithm applied. Several previous
columns discussed interpolation algorithms (January through March, 1994 BM columns), so now
it’s time to turn our attention to spatial dependency and sampling design.

Spatial dependency within a data set simply means that “what happens at one location depends
on what is happening around it” (formally termed positive spatial autocorrelation). 1It’s this
idea that forms the basis of statistical tests for spatial dependency. The Geary Index calculates
the squared difference between neighboring sample values, then compares their summary to the
overall variance for the entire data set. If the neighboring variance is a lot less than the overall,
then considerable dependency is indicated. The Moran Index is similar; however it uses the
products of neighboring values instead of the differences. A variogram plots the similarity
among locations as a function of distance.

Although these calculations vary and arguments abound about the best approach, all of them are
reporting the degree of similarity among point samples. | f there is a lot, then you can generate
maps from the data; if there isn’t much, then you are more than wasting your time. A pretty map
can be generated regardless of the degree of dependency, but if dependency is minimal the map
is just colorful gibberish... so don’t bet the farm on it.
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Figure 1. Variable sampling frequencies by soil strata for two fields.
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OK, let’s say the data set you intend to map exhibits ample spatial autocorrelation. Your next
concern is establishing a sampling frequency and pattern that will capture the variable’s spatial
distribution— sampling design issues. There are four distinct considerations in sampling design:
1) stratification, 2) sample size, 3) sampling grid, and 4) sampling pattern.

The first three considerations determine the appropriate groupings for sampling (stratification),
the sampling intensity for each group (sample size), and a suitable reference grid (sampling grid)
for expressing the sampling intensity for each group (see figure 1). All three are closely tied to
the spatial variation of the data to be mapped. Let’s consider mapping phosphorous levels within
a farmer’s field. If the field contains a couple of soil types, you might divide it into two “strata.”
If previous sampling has shown one soil strata to be fairly consistent (small variance), you might
allocate fewer samples than another more variable soil unit, as depicted in the accompanying
figure.

Also, you might decide to generate a third stratum for even more intensive sampling around the
soil boundary itself. Or, another approach might utilize mapped data on crop yield. If you
believe the variation in yield is primarily “driven” by soil nutrient levels, then the yield map
would be a good surrogate for subdividing the field into strata of high and low yield variability.
This approach might respond to localized soil conditions that are not reflected in the traditional
(encoded) soil map.

Historically, a single soil sampling frequency has been used throughout a region, without regard
for varying local conditions. In part, the traditional single frequency was chosen for ease and
consistency of field implementation and simply reflects a uniform spacing intensity based on
how much farmers are willing to pay for soil sampling.

Within GIS/GPS technology, variable sample frequency is a modern alternative. Whether you
are sampling soil nutrients, water pollution or people’s opinions with the intent of making a map,
the sampling frequency should consider the spatial variation in the data, not just the automation
of a traditional non-spatial sampling intensity. In addition, the sampling pattern should be
spatially based... but that’s another story.

Designer Samples

(GeoWorld, January 1997)
(return to top of Topic)

The previous section briefly discussed spatial dependency and the first three steps in point
sampling design— stratification, sample size and sampling grid. These considerations determine
the appropriate areas, or groupings, for sampling (stratification), the sampling intensity for each
group (sample size) and a suitable reference grid (sampling grid) for locating the samples. The
fourth and final step “puts the sample points on the ground” by choosing a sampling pattern to
identify individual sample locations.

Traditional, non-spatial statistics tends to emphasize randomized patterns as they insure
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maximum independence among samples... a critical element in calculating the central tendency
of a data set (average for an entire field). However, “the random thing” can actually hinder
spatial statistics’ ability to map field variability. Arguments supporting such statistical heresy
involve a detailed discussion of spatial dependency and autocorrelation, which (mercifully) is
postponed to another issue. For current discussion, let’s assume sampling patterns other than
random are viable candidates.

Figure 1 identifies five systematic patterns, as well as a completely random one. Note that the
regular pattern exhibits a uniform distribution in geographic space. The staggered start does so
as well, except the equally spaced Y -axis samples alternate the starting position at one half the
sampling grid spacing. The result is a “diamond” pattern rather than a “rectangular” one. The
diamond pattern is generally considered better suited for generating maps as it provides more
inter-sample distances for spatial interpolation. The random start pattern begins each column
“transect” at a randomly chosen Y coordinate within the first grid cell, thereby creating even
more inter-sample distances. The result is a fairly regularly spaced pattern, with “just a tasteful
hint of randomness.”

REGULAR STAGGERED START RANDOM START

R EEEEE “ o " e " o' e s T 00 Ve
I EEEEN * e e ', s Y00 , 0
R EERE * o' e 'L, ' o Y0t , L Ve
® ° 0 0 0 0 0 0 * e e .. N
® 0 0 0 0 0 0 0 * e e 'L N e
® e 0 0 0 0 0 0 * e ' e "' N e
® o 0 0 0 0 s e * e e "' A
® s 0 0 0 0 s e * o e ', s TV,
(o ¥ L ¥
I o. ‘ . e :— e R ver .,

o * e I .+ (] L] . .,
L . s w4 | B o .‘l

L T L . o e . %% o

o - -+ . oo o o®
[ . * * L] [ e +. . . o - .:
(I Y . ’ e e « ¥,
) . * S e g 0 o ®

. . . o *, o, e e e, s : ) .

¢ ' et o % *y +* [ " ® g, *, g.
SYSTEMATIC UNALIGNED RANDOM CLUSTER SIMPLE RANDOM

Figure 1. Basic spatial sampling patterns.

The systematic unaligned pattern also results in a somewhat regularly spaced pattern, but
exhibits even more randomness as it is not aligned in either the X or Y direction. A study area
(i.e., farmer’s field) is divided into a sampling grid of cells equal to the sample size. The pattern
is formed by first placing a random point in the cell in the lower-left corner of the grid to
establish a pair of X and Y offsets. Random numbers are used to specify the distance separating
the initial point from the left border (termed the X-offset) and from the bottom border (termed
the Y-offset).
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For the bottom row of the sampling grid, the X-offset is held constant while Y is randomly
varied. For the left-most column, the Y-offset is held constant while X is varied. Sample points
are then placed in the remaining grid cells insuring that the X-offsets are the same along each
row and the Y-offsets are the same along each column. The result is a set of sample points that
are roughly equally spaced, but out of alignment.

The “dots” in the random cluster pattern establish an underlying uniform pattern (every other
staggered start sample point in this example). The “crosses” locate a set of related samples that
are randomly chosen (both distance and direction) within the enlarged grid space surrounding
each regularly placed each dot. Note that the pattern is not as regularly spaced as the previous
techniques, as half of the points are randomly set, however, it has other advantages. The random
subset of points provides a foothold for a degree of unbiased statistical inference, such as a t-test
of significance differences among population means.

The simple random pattern uses random numbers to establish X and Y coordinates within the
entire study area. It allows full use of statistical inference (whole field non-spatial statistics), but
the “clumping” of the samples results in large “gaps” thereby limiting its application for mapping
(site-specific spatial statistics).

So which pattern should be used? Generally speaking, the Regular and Simple Random patterns
are the worst for spatial analysis. If you have trouble locating yourself in space (haven’t bought
into GPS yet?), then Random Start might get the nod. If you can freely navigate in space, then
Systematic Unaligned might be best. But if you want to perform statistical inference, then
Random Cluster might be considered. Non-generally speaking, you should use whichever
pattern works best with your data and your objectives... how to tell which is best is left for
another time.

(Advanced Concepts in Spatial Dependency)

Depending on the Data

(GeoWorld, May 1997)
(return to top of Topic)

Historically, maps have reported the precise position of physical features for the purpose of
navigation. Not long after emerging from the cave, early man grabbed a stick and drew in the
sand a route connecting the current location to the best woolly mammoth hunting grounds,
neighboring villages ripe for pillaging, the silk route to the orient and the flight plan for the first
solo around the world. The basis for the navigational foundation of mapping lies in referencing
systems and the expression of map features as organized sets of coordinates. The basis for
modern GIS, however, lies in the concept of spatial dependency.

GIS technology embraces the traditional aspects of mapping. In fact it greatly extends the access
and ease of use in generating custom views of the mosaic of elements comprising our real world.
But its revolutionary impacts involve how we perceive, conceptualize and communicate thoughts
on the linkages and relative importance of spatially explicit relationships. The emphasis has
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moved from the mapping question of "where is what" to the social, economic, environmental
(etc.) questions of "so what" and "what should we do where?"

The technical focus has been enlarged to include a growing set of procedures for discovering and
expressing the dependencies within and among mapped data. Spatial dependency identifies
relationships based on relative positioning. Certain trees tend to occur on certain soil types,
slopes and climatic zones. Animals tend to prefer specific biological and contextual conditions.
Particularly good sales prospects for luxury cars tend to cluster in a few distinct parts of a city.

In fact, is anything randomly placed in geographic space? A rock, a bird, a person, a molecule?

There are two broad types of spatial dependency: 1) spatial variable dependence and 2) spatial
relations dependence. Spatial variable dependency stipulates that what occurs at a map location
is related to:

1) the conditions of that variable at nearby locations (termed spatial autocorrelation); and/or
2) the conditions of other variables at or around that location (termed spatial correlation).

Spatial autocorrelation forms the backbone of all interpolation techniques. They relate
neighboring sample points to predict a variable response at unmeasured locations. If the
neighboring points are spatially independent, there is little justification for generating a map
surface. For example, if the elevation is 100 feet here and you note that it is 50 over there, there
has to be at least one location of 75 feet in between. That's because elevation forms a highly
auto-correlated gradient in geographic space. True, it might be that the 75 foot location is part
way down the precipice a foot in front of you, but it has to exist. The continuum is there, it's just
that the functional form isn't a simple linear transition between the points.

Contrast an elevation surface with a map of roads. If you're standing on a heavy duty, road-type
4 (watch out for buses) and note a light duty road-type 1 over there, it is absurd to assume that
there is a road-type 2.5 somewhere in between. Two basic spatial autocorrelation factors are not
at play— formation of a spatial gradient and existence of partial states. Neither of the
assumptions makes sense for the occurrence of the discrete map objects forming a road map
(termed a choropleth map).

However, both factors make sense for an elevation surface (termed an isopleth map). But spatial
autocorrelation isn't black and white, present or not present; it occurs in varying degrees for
different map types and spatial variables. The degree to which a map exhibits intra-variable
dependency determines the nature and strength of the relationships one can derive about its
geographic distribution.

In a similar manner, inter-variable dependency affects our ability to track spatial relationships.
Spatial correlation forms the basis for mapping relationships among maps. For example, in the
moisture limited ecosystems of Colorado, spruce and fir forests most often occur on northern
slopes, while sparse pine forests tend to occur on the dry southern exposures. Soil conditions
and depth play a big part in forest vitality, as well the frequency of catastrophic events, such as
fire. Animal, bird, insect and micro-organism populations are strongly dependent on terrain and
forest conditions. Boy and girl scouts as well as resource managers have known these general
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"rules” of spatial coincidence for years. Scientists have written about them for years. What has
changed are the "tools" for deriving, verifying and applying more detailed and spatially explicit
relationships.

Historically, scientists have used sets of discrete samples to investigate relationships among field
plots on the landscape, in a manner similar to Petri dishes on a laboratory table— each sample is
assumed to be spatially independent. GIS technology provides the geo-referencing necessary to
align sets of map variables and the analytic tools to investigate correlation among their spatial
patterns. For example, a map of animal activity can be statistically related to a set of habitat
determinant maps, such as terrain form and vegetative cover, on a pure coincidence basis (point-
by-point).

Introduction of neighboring conditions, such as proximity to water and cover type diversity,
expands the simple alignment analysis to one of spatial context. The derived relationship can be
empirically verified by generating a map predicting animal activity for another area and
comparing it to known animal activity within that area. Once established, the verified spatial
relationship can be used directly by managers in their operational GIS. In fact the cultural
alignment of science and management activities brought about by GIS technology (i.e., same
"tool" used by both scientists and managers) might prove to be as significant as the technical
capability to align map layers for analysis. At minimum, it should expedite the linkages among
basic science, applied research and technology transfer.

The other broad type of spatial dependency involves the nature of the relationship itself. Spatial
relations dependency stipulates that relationships among mapped variables can be:

1) constant throughout space and time (termed spatial homogeneity); or
2) variable as a function of space and/or time (termed spatial heterogeneity).

Very few relationships exhibit pure spatial homogeneity by remaining constant over space and
time. Even the "laws" of thermal dynamics have conditional boundaries— water freezes at zero
degrees centigrade. .. as long as it is pure and at sea level. Pour in some salt and carry it to top of
a mountain and it will freeze at a different kinetic temperature. Similarly, most spatial
relationships exhibit spatial heterogeneity and vary to some degree with space and time.

For example, a habitat unit across a river might be considered disjoint and inaccessible to a non-
swimming and flightless animal. However, if the river freezes in the winter, then the spatial
relationships defining habitat needs to change with the seasons. Similarly, a forest growth model
developed for Colorado might be inappropriate for application in Oregon. It's likely the basic
map layers and logic structuring the model are identical, but the relative weights assigned to the
growth functions vary with geographic regions and the model must be "tuned" for local variants.

The complexities of spatial dependence are not unique to resource models. GIS modeling of
product sales, traffic flows, and voter patterns exhibit varying degrees of spatial variable and
relations dependencies. Awareness of these concepts and their effects are as important to
modern GIS as understanding data structures and geo-referencing procedures— possibly even
more important?
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Uncovering the Mysteries of Spatial
Autocorrelation

(GeoWorld, July 1997)
(return to top of Topic)

The following discussion violates all norms of journalism, as well as common sense. It attempts
to describe an admittedly complex technical subject without the prerequisite discussion of the
theoretical linkages, provisional statements, and enigmatic equations. | apologize in advance to
the statistical community for the important points left out of the discussion... and to the rest of
you for not leaving out more.

The last section identified spatial autocorrelation as the backbone of all interpolation techniques
used to generate maps from point sampled data. The term refers to the degree of similarity
among neighboring points. If they exhibit a lot similarity, or spatial dependence, then they ought
to derive a good map; if they are spatially independent, then expect pure, dense gibberish. So
how do we measure whether “what happens at one location depends on what is happening
around it?”

Previous discussion (December 1996 BM column) introduced two simple measures to determine
whether a data set has what it takes to make a map— the Geary and Moran indices. The Geary
Index looks at the differences in the values between each sample point and its closest neighbor.
If the differences in neighboring values tend to be less than the differences among all values in
the data set, then spatial autocorrelation exists. The mathematical mechanics are easy (at least
for a tireless computer)— 1) add up all of the differences between each location’s value and the
average for the entire data set (overall variation), 2) add up all of the differences between values
for each location and its closest neighbor (neighbors variation), and then 3) compare the two
summaries using an appropriately ugly equation to account for “degrees of freedom and
normalization.”

If the differences among the neighbors are a lot smaller than the overall variation, then a high
degree of positive spatial dependency is indicated. If they are about the same, or if the neighbors
variation is larger (a rare “checkerboard-like” condition), then the assumption that “close things
are more similar” fails... and, if the dependency test fails, so will the interpolation of the data.
The Moran Index simply uses the products between the values, rather than the differences to test
the dependency within a data set. Both approaches are limited, however, as they merely assess
the closest neighbor, regardless of its distance.

That’s where a variogram comes in. | t is a plot (neither devious nor spiteful) of the similarity
among values based on the distance between them. Instead of simply testing whether close
things are related, it shows how the degree of dependency relates to varying distances between
locations. Most data exhibits a lot of similarity when distances are small, then progressively less
similarity as the distances become larger.
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In figure 1, you would expect more similarity among the neighboring points (shown by the
lines), than sample points farther away. Geary and Moran consider just the closest neighbors
(orthogonal distances of above, below, right and left for the regular grid sampling design). A
variogram shows the dependencies for other distances, or spatial frequencies, contained in the
data set (such as the diagonal distances).

SAMPLE POINTS UVARIOGRAM PLOT

QUERALL UARIATION (K@)
L ¢ ® L =

measure of the total
variation in a data set

Min Range

[

Ko

—Diagonal
Distance

|— QOrthogonal
Distance

t

KR Max Range

JOINT UARIATION (Kp)

measure of the total
variation reflected in
the pairs of points at
various distances

o DATA VARIATION

8 DISTANCE

Figure 1. Plot of the similarity among sample points as a function of distance (shaded portion)
shows whether interpolation of the data is warranted.

If you keep track of the multitude of distances connecting all locations and their respective
differences, you end up with a huge table of data relating distance to similarity. In this case, the
overall variation in a data set (termed the variance) is compared to the joint variation (termed the
covariance) for each set of distances. For example, there is a lot of points that are “one
orthogonal step away” (four for the example point). If we compute the difference between the
values for all the “one-steppers,” we have a measure reminiscent of Moran’s “neighbors
variation”— differences among pairs of values.

A bit more “mathematical conditioning” translates this measure into the covariance for that
distance. If we focus our attention on all of the points “a diagonal step away” (four around the
example point), we will compute a second similarity measure for points a little farther away.
Repeating the joint variation calculations for all of the other spatial frequencies (two orthogonal
steps, two diagonal steps, etc.), results in enough information to plot the variogram shown in the
figure.

Note the extremes in the plot. The top horizontal line indicates the total variation within the data
set (overall variation; variance). The origin (0,0) is the unique case for distance= 0 where the
overall variation in the data set is identical to the joint variation as both calculations use
essentially the same points. As the distance between points is increased, subsets of the data are
scrutinized for their dependency (joint variation; covariance). The shaded portion in the plot
shows how quickly the spatial dependency among points deteriorates with distance.
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The maximum range position identifies the distance between points beyond which the data
values are considered to be independent of one another. This tells us that using data values
beyond this distance for interpolation is dysfunctional (actually messes-up the interpolation).
The minimum range position identifies the smallest distance (one orthogonal step) contained in
the data set. If most of the shaded area falls below this distance, it tells you there is insufficient
spatial dependency in the data set to warrant interpolation.

True, if you proceed with the interpolation a nifty colorful map will be generated, but it’ll be less
than worthless. Also true, if we proceed with more technical detail (like determining optimal
sampling frequency and assessing directional bias in spatial dependency), most this column’s
readership will disappear (any of you still out there?).

Unlocking the Keystone Concept of
Spatial Dependency

(GeoWorld, November 1998)
(return to top of Topic)

Previous discussion (October 1998 BM column) investigated the numerical character of a
gridded elevation surface. Keystone to the discussion was the degree of “normality” exhibited in
the data as measured by commonly used descriptive statistics— min, max, range, median, mode,
mean (or average), variance, standard deviation, standard error, confidence level, skewness and
kurtosis. All in all, it appeared that the elevation data didn’t fit the old “bell-shaped” curve very
well.

So, how useful is “normal” statistics in GIS applications? That’s an interesting debate set off by
a letter to the editor (GIS World, Vol. 11, No. 9), with several individuals contributing their
thoughts to the “Column Supplements” page at www.innovativegis.com/basis. I f you’re a techy-
type and wired to the internet you might want to check out the extended discussion.

At the risk of overstepping my bounds of expertise, let me suggest that using the average to
represent the central tendency of a data set is usually OK. However, when the data isn’t
normally distributed the average might not be a good estimator of the “typical” condition.
Similarly, the standard deviation can be an ineffective measure of dispersion for ab-normally
distributed data... it all depends.

So, what’s a GIS’er to do, short of getting an advanced degree in statistics or abducting a
statistician? The correct response is to enter the murky realm of non-parametric statistics. The
easy response is to forget all of the past columns with statistical leanings and blissfully apply the
average and standard deviation to all of the data falling within a polygon.

Yet another response is to use the “poor man’s” answer to asymmetric data— use the median to
represent the “typical” condition and the quartile range to estimate the data’s dispersion (the
quartile range corresponds to the middle 50% of the frequency distribution). Suggesting such a
“seat-0f-the-pants” statistical procedure should provide the last whack to my extended neck and
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set-off another round of discussions in the Column Supplements.

Even more disturbing, however, is the realization that while descriptive statistics might provide
insight into the numerical distribution of the data, they provide no information what-so-ever into
the spatial distribution of the data. As noted last month, all sorts of terrain configurations can
produce exactly the same set of descriptive statistics. That’s because traditional measures are
breed to ignore geographic patterns— in fact spatial independence is an underlying assumption.

So how can one tell if there is spatial dependency locked inside a data set? You know, Tobler’s
first law of geography that “all things are related but nearby things are more related than distant
things.” Let’s use Excel and some common sense to investigate this keystone concept and the
approach used in deriving a descriptive statistics that tracks spatial dependency (see Author’s
Note).

The left side of the figure 1 identifies sixteen sample points in a 25 column by 25 row analysis
grid (origin at 1, 1 in the upper left, northwest corner). The positioning of the samples are
depicted in the two 3-D plots. Note that the sample positions are the same (horizontal axes),
only the measurements at each location vary (vertical axis). The plot on the left depicts sample
values that form a plane constantly increasing from the southwest to the northeast. The plot on
the right depicts a jumbled arrangement of the same measurement values.

Jumbled Placement Tilted Plane
ovalines are randomly vabes increase from
mixed Samples SW (=1, y=25) fo
.16 distributed samples NE (=235, y=1)

Value V-Awg Dif  Unsigned NN Value V-NN Diff Unsigned| | Sample X Y NN Value  V-Avg Dif Unsigned NN_Value V-NN_Diff | Unsigned
25.00 8.00 8.00 13.00 12.00 12.00 # 18 3 #5 26.00 9.00 9.00 22,00 4.00 4.00]
4.00 -13.00 13.00 30.00 -26.00 26.00 2 4 4 4 17.00 0.00 0.00 21.00 -4.00 4.00/
16.00 -1.00 1.00 8.00 8.00 8.00 3 22 4 7 30.00 13.00 13.00 25.00 5.00 5.00
30.00 13.00 13.00 22.00 8.00 8.00 4 10 5 8 21.00 4.00 4.00 16.00 5.00 5.00
13.00 -4.00 4.00 17.00 -4.00 4.00 5 16 9 9 22.00 5.00 5.00 18.00 4.00 4.00]
21.00 4.00 4.00 4.00 17.00 17.00 6 4 10 2 13.00 -4.00 4.00 17.00 -4.00 4.00]
8.00 -9.00 9.00 9.00 -1.00 1.00 7 22 10 11 25.00 8.00 8.00 21.00 4.00 4.00/
22.00 5.00 5.00 30.00 -8.00 8.00 8 10 11 4 16.00 -1.00 1.00 21.00 -6.00 5.00
17.00 0.00 0.00 21.00 -4.00 4.00 9 16 15 13 18.00 1.00 1.00 13.00 5.00 5.00
18.00 1.00 1.00 21.00 -3.00 3.00 10 4 18 6 9.00 -8.00 8.00 13.00 -4.00 4.00]
9.00 -8.00 8.00 26.00 -17.00 17.00 1 22 16 15 21.00 4.00 4.00 17.00 4.00 4.00/
12.00 -5.00 5.00 17.00 -5.00 5.00 12 10 17 16 12.00 -5.00 5.00 8.00 4.00 4.00/
21.00 4.00 4.00 17.00 4.00 4.00 13 16 21 9 13.00 -4.00 4.00 18.00 -6.00 5.00
13.00 -4.00 4.00 18.00 -5.00 5.00 14 4 2 10 4.00 -13.00 13.00 9.00 -56.00 5.00
26.00 9.00 9.00 9.00 17.00 17.00 18 22 22 1 17.00 0.00 0.00 21.00 -4.00 4.00/
17.00 0.00 0.00 12.00 5.00 5.00 16 10 23 12 8.00 -9.00 9.00 12.00 -4.00 4.00/

4.00 Mininunre 4.00

30.00 Maxinunr 30.00
17.00 5.50 9.00 Average= 17.00 5.50 4.38,
1.64 Spatial Dependency Measure 0.80

(ratio of Value-NN_Diff / Value Avg Diff)

Figure 1. The spatial dependency in a data set compares the “typical” and “nearest neighbor”
differences— if the nearest neighbor differences are less than the typical differences, then
"nearby things are more similar than distant things."

The first column (labeled Value) in the Tilted and Jumbled worksheets confirm that the
traditional descriptive statistics are identical— derived from same values, just in different
positions. The second column calculates the difference between each value and the average of
the entire set of samples. The sign of the difference indicates whether the value is above or
below the average, or typical value.
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The third column (labeled Unsigned) identifies the magnitude of the difference by taking its
absolute value— |Value — Average|. The average of all the unsigned differences summarizes the
“typical” difference. The relatively large figure of 5.50 for both the Tilted and Jumbled data sets
establishes that the individual samples aren’t very similar overall.

The next three columns in both worksheets provide insight into the spatial dependency in the two
data sets by evaluating Tobler’s first law. The NN_Value column identifies the value for the
nearest neighboring (closest) sample. It is determined by solving for the distance from each
sample location to all of the others using the Pythagorean theorem (c®= a + b?), then assigning
the measurement value of the closest sample.

The final two columns calculate the unsigned difference between the value at a location and its
nearest neighboring value, then compute the unsigned difference— |Value — NN_Value|. Note
that the Tilted data’s nearest neighbor difference (4.38) is considerably less than that for the
Jumbled data (9.00).

Now the stage is set. If the nearest neighbor differences are less than the typical differences,
then “...nearby things are more related than distant things.” A simple Spatial Dependency
Measure is calculated as the ratio of the two differences. If the measure is 1.0, then minimal
spatial dependency exists. As the measure gets smaller, increased positive spatial dependency is
indicated; as it gets larger, increased negative spatial dependency is indicated (nearby things are
less similar than distant things).

OK, so what if the basic set of descriptive statistics can be extended to include a measure of
spatial dependency? What does it tell you? How can you use it? Its basic interpretation is to
what degree the data forms a discernible spatial pattern. If spatial dependency is minimal or
negative there is little chance that geographic space can be used to explain the variation in the
data. In these conditions, assigning the average (or median) to an entire polygon is warranted.
On the other hand, if strong positive spatial dependency is indicated, you might consider
subdividing the polygon into more homogenous parcels to better “map the variation” locked in a
data set. Or better yet, treat the area as a continuous surface (gridded data). But further
discussion of refinements in calculating and interpreting spatial dependency must be postponed
until next time.

Author’s Note: the Excel worksheets supporting the discussions of the Tilted and Jumbled data sets (as well as a
Blocked and a Random pattern) can be downloaded from the “Column Supplements” page at
Www.innovativegis.com/basis.

Measuring Spatial Dependency

(GeoWorld, December 1998)
(return to top of Topic)

Recall the previous section’s discussion of "nearest neighbor" spatial dependency to test the
assertion that "nearby things are more related than distant things." The procedure was simple—
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calculate the difference between each sample value and its closest neighbor (|Value -
NN_Value|), and then compare them to the differences based on the typical condition (|Value -
Average|). | f the Nearest Neighbor and Average differences are about the same, little spatial
dependency exists. If the nearby differences are substantially smaller than the typical
differences, then strong positive spatial dependency is indicated and it is safe to assume that
nearby things are more related.

But just how are they related? And just how far is "nearby?" To answer these questions the
procedure needs to be expanded to include the differences at the various distances separating the
samples. As with the previous discussions, Excel can be used to investigate these relationships
(see Author’s Note). The plot on the left side of figure 1 identifies the positioning and sample
values for the Tilted Plane data set described last month.

...y distance Spatial Dependency
Titled Plane (Sample #1) increases, the 3o :
difference g T 77
between values | =" T 1%
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- 1 (ositive spatial | = .. %
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- * | * #1535 - depmdency) Distance
4.0
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Figure 1. Spatial dependency as a function of distance for sample point #1.

The arrows emanating from sample #1 shows its 15 paired values. The table on the right
summarizes the unsigned differences (|Diff |) and distances (Distance) for each pair. Note that
the "nearby" differences (e.g., #3= 4.0, #4= 5.0 and #5= 4.0) tend to be much smaller than the
"distant” differences (e.g., #10=17.0, #14= 22.0, and #16= 18.0). The graph in the upper right
portion of the figure plots the relationship of sample differences versus increasing distances. The
dotted line shows a trend of increasing differences (a.k.a. dissimilarity) with increasing distances.

Now imagine calculating the differences for all the sample pairs in the data set—the 16 sample
points combine for 120 sample pairs—(N*(N-1)/2)= (16*15)/2=120). Admittedly, these
calculations bring humans to their knees, but it's just a microsecond or so for a computer. The
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result is a table containing the |Diff | and Distance values for all of the sample pairs.

The extended table embodies a lot of information for assessing spatial dependency. The first
step is to divide the samples into two groups— close and distant pairs. For consistency across
data sets, let's define the "breakpoint"” as a proportion of the maximum distance (Dmax) between
sample pairs. Figure 2 shows the results of applying a dozen breakpoints to divide the data set
into "nearby" and "distant" sample sets. The first row in the table identifies very close neighbors
(.005Dmax= 6.10) and calculates the average nearby differences (JAvg_Nearby|) as 4.00. The
remaining rows in the table track the differences for increasing distances defining nearby
samples. Note that as neighborhood size increases, the average difference between sample
values increases. For this data set, the greatest difference occurs for the neighborhood that
captures all of the data (1.00Dma= 25.46 with an average difference of 8.19).

Step Break Dist |Avg Nearby Nearby Diff vs Dist
005D 6.10 4.00 (Tilted Plane)

05D 6.97 4.25 -

10D 7.95 4.61 800 pott
.20D 9.89 4.05 £ 700

.30D 11.84 4.41 e )'M

40D 13.78 5.86 5 e

50D 15.73 6.56 = 300

60D 17.67 6.30 2 am

70D 19.62 7.74 100

.80D 21.56 7.79 o0 1om  2m 20w
90D 23.51 8.19 Break Dist

1.0D 25.46 8.19

Figure 2. Average “nearby” differences for increasing breakpoint distances used to define
neighboring samples.

The techy-types among us will note that the plot of “Nearby Diff versus Dist” in figure 2 is
similar to that of a variogram. Both assess the difference among sample values as a function of
distance. However, the variogram tracks the difference at discrete distances, while the “Nearby
Diff versus Dist” plot considers all of the samples within increasingly larger neighborhoods.

This difference in approach allows us to directly assess the essence of spatial dependency—
whether “nearby things are more related than distant things.” A “distance-based spatial
dependency measure (SD_D)” can be calculated as— SD_D = [|Avg_Distant| - |[Avg_Nearby]] /
|Avg_Distant].

The effect of this processing is like passing a donut over the data. When centered on a sample
location, the “hole” identifies nearby samples, while the “dough” determines distant ones. The
“hole” gets progressively larger with increasing breakpoint distances. If, at a particular step, the
nearby samples are more related (smaller |Avg_Nearby| differences) than the distant set of
samples (larger |Avg_Distant| differences), positive spatial dependency is indicated.
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Figure 3. Comparing spatial dependency by directly assessing differences of a sample’s value to
those within nearby and distant sets.

Now let’s put the SD_D measure to use. Figure 3 plots the measure for the Tilted Plane (TP with
constantly increasing values) and Jumbled Placement (JP with a jumbled arrangement of the
same values) sample sets discussed the previous section. First notice that the measures for TP
are positive for all breakpoint distances (nearby things are always more related), whereas they
bounce around zero for the JP pattern. Next, notice the magnitudes of the measures— fairly
large for TP (big differences between nearby and distant similarities); fairly small for JP.

Finally, notice the trend in the plots—downward for TP (declining advantage for nearby
neighbors); flat, or unpredictable for JP.

So what does all this tell us? If the sign, magnitude and trend of the SD_D measures are like
TP’s, then positive spatial dependency is indicated and the data conforms to the underlying
assumption of most spatial interpolation techniques. If the data is more like JP, then “beware of
flakey interpolation.”

Author’s Note: the Excel worksheets supporting the discussion of the Tilted and Jumbled data sets (as well as a
Blocked and Random pattern) can be downloaded from the “Column Supplements” page at
www.innovativegis.com/basis.
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Extending Spatial Dependency to Maps

(GeoWorld, January 1999)

return to top of Topic

The past four sections have focused on the important geographical concept of spatial

dependency— that nearby things are more related than distant things. The discussion to date has
involved sets of discrete sample points taken from a variety of geographic distributions. Several
techniques were described to generate indices tracking the degree of spatial dependency in point

sampled data.

Now let’s turn our attention to continuously mapped data, such as satellite imagery, soil electric
conductivity, crop yield or product sales surfaces. In these instances, a grid data structure is used
and a value is assigned to each cell based on the condition or character at that location. The
result is a set of data that continuously describes a mapped variable. These data are radically
different from point sampled data as they fully capture the spatial relationships throughout an

entire area.
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Figure 1. Spatial dependency in continuously mapped data involves summarizing the data values

within a “roving window” that is moved throughout a map.
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The analysis techniques for spatial dependency in these data involve moving a “roving window”
throughout the data grid. As depicted in figure 1, an instantaneous moment in the processing
establishes a set of neighboring cells about a map location. The map values for the center cell
and its neighbors are retrieved from storage and depending on the technique, the values are
summarized. The window is shifted so it centers over the next cell and the process is repeated
until all map locations have been evaluated. Various methods are used to deal with incomplete
windows occurring along map edges and areas of missing data.

The configuration of the window and the summary technique is what differentiates the various
spatial dependency measures. All of them, however, involve assessing differences between map
values and their relative geographic positions. In the context of the data grid, if two cells are
close together and have similar values they are considered spatially related; if their values are
different, they are considered unrelated, or even negatively related.

Geary’s C and Moran’s I introduced in the 1950’s are the most frequently used measures for
determining spatial autocorrelation in mapped data. Although the equations are a bit
intimidating—
Geary’s C = [(n —1) SUM w; (x; — x)°] / [(2 SUM w;) SUM (x; — m)?]

Moran’s | = [n SUM w;; (xi — m) (x;—m)] / [(SUM w;) SUM (x; — m)Z]
where, n = number of cells in the grid

m = the mean of the values in the grid

x; = value of cell in group i and x; = value of cell in group j
w;; = a switch set to 1 if the cells are adjacent; 0 if not adjacent (diagonal)

—however, the underlying concept is fairly simple.

For example, Geary’s C simply compares the squared differences in values between the center
cell and its adjacent neighbors (numerator tracking “x; — X;”’) to the overall difference based on
the mean of all the values (denominator tracking “x;j — m”). If the adjacent differences are less,
then things are positively related (similar, clustered). If they are more, then things are negatively
related (dissimilar, checkerboard). And if the adjacent differences are about the same, then
things are unrelated (independent, random). Moran’s I is a similar measure, but relates the
product of the adjacent differences to the overall difference.

Now let’s do some numbers. An adjacent neighborhood consists of the four contiguous cells
about a center cell, as highlighted in the upper right inset of figure 1. Given that the mean for all
of the values across the map is 170, the essence for this piece of Geary’s puzzle is

C = [(146-147)° + (146-103) > + (146-149) > + (146-180) %] / [4 * (146-170) )]
=[1+1849 +9+1156]/[4*576 ] = 3015 /2304 = 1.309

Since the Geary’s C ratio is just a bit more than 1.0, a slightly uncorrelated spatial dependency is
indicated for this location. As the window completes its pass over all of the other cells, it keeps
a running sum of the numerator and denominator terms at each location. The final step applies
some aggregation adjustments (the “eye of newt” parts of the nasty equation) to calculate a
single measure encapsulating spatial autocorrelation over the whole map— a Geary’s C of 0.060
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and a Moran’s I of 0.943 for the map surface shown in figure 1. Both measures report strong
positive autocorrelation for the mapped data. The general interpretation of the C and | statistics
can be summarized as follows.

0<C«<l1 Strong positive autocorrelation >0
C>1 Strong Negative autocorrelation | 1<0
c=1 Random distribution of values =0

In the tradition of good science, let me suggest a new, related measure— Berry’s ID. This
Intuitive Dependency (ID) measure simply assigns the calculated ratio from Geary’s formula to
each map location. The result is a map indicating the spatial dependency for each location
(pieces of the puzzle), instead of a single value summarizing the entire map. In the example,
1.309 is assigned to the center location in the figure. However a value of 0.351 is assigned to the
cell directly above it and 4.675 is assigned to the cell directly below it ...you do the math.

Although this new measure might be intuitive—adjacent differences (nearby things) versus
overall difference (distant things)—it’s much too ugly for statistical canonization. First, the
values are too volatile and aren’t constrained to an easily interpreted range. More importantly,
the measure doesn’t directly address “localized spatial autocorrelation” because the nearby
differences are compared to distant differences represented as the map mean.

That’s where the doughnut neighborhood comes in. The roving window is divided into two sets
of data—the adjacent values (inside ring of nearby things) and the doughnut values (outside ring
of distant things). One could calculate the mean for the doughnut values and substitute it for
Geary’s C’s denominator. But since there’s just a few numbers in the outer ring, why not use the
actual variation between the center and each doughnut value? That directly assesses whether
nearby things are more related than distant things for each map neighborhood. A user can
redefine “distant things” simply by changing the size of the window. In fact, if you recall last
month’s article, a series of window sizes could be evaluated and differences between the maps at
various “doughnut radii” could provide information about the geographic sensitivity of spatial
dependency throughout the mapped area (sort of a mapped variogram).

But let’s take the approach one step further for a new measure we might call Berry IT (yep, you
got it... "bury it" for tracking the Intimidating Territorial autocorrelation). Such a measure is
reserved for the statistically adept as it performs an F-test for significant difference between the
adjacent and doughnut data groups for each neighborhood.

Author’s Note: check out this month’s Column Supplement at www.innovativegis.com for more info and an Excel
worksheet applying several concepts for mapping spatial dependency.

Use Polar Variograms to Assess
Distance and Direction Dependencies

(GeoWorld, September 2001)
(return to top of Topic)
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The previous sections have investigated spatial dependency—the assumption that “nearby things
are more related than distant things.” This autocorrelation forms the basic concept behind spatial
interpolation and the ability to generate maps from point sampled data. If there is a lot of spatial
autocorrelation in a set of samples, expect a good map; if not, expect a map of pure, dense
gibberish.

An index of spatial autocorrelation compares the differences between nearby sample pairs with
those from the average of the entire data set. One would expect a sample point to be more like
its neighbor than it is to the overall average. The larger the disparity between the nearby and
average figures the greater the spatial dependency and the likelihood of a good interpolated map.

A variogram plot takes the investigation a bit farther by relating the similarity among samples to
the array of distances between them. Figure 1 outlines the mechanics and important aspects of
the relationship. The distance between a pair of points is calculated by the Pythagorean Theorem
and plotted along the X-axis. A normalized difference between sample values (termed semi-
variance) is calculated and plotted along the Y-axis. Each point-pair is plotted and the pattern of
the points analyzed.

Var iogr A (Distance Dependency)

For the three points shrown below, the separation of

the three pairs can be sununarized as ... Overall Variation (K,)
'y .. measure of the total variation
éao_graphﬁ: Spjﬁ& > Min Range in a data set
o K _ee=mT0T K,
= I - t
ﬁ ' - Max Range
o c .-
®. < L Jig PR .
#2 (100,200) > ,®B Joint Variation (K,)
< s E H measure of the total
|<-t ’ s : variation reflected in the
(] ! , A E E pairs q)“pumm al various
/ i i ! distances
#1 (50,50) b 0 O'—b—o'—o >
DISTANCE Variogram
Point Pair Dist
A (50,50), (100,200)  158.11
B (50,50), (500,100)  452.77 “..nearby things are more related

C (100,200), (500,100) 412.31 than distant things.”

...the position along the X-axes
summarizes the distance between pairs of .
poinis. The difference between. the Dist=(a*+b*)
measured valies of point pairs = ((500-50) + (100-507 ) &
characterizes the spatial antocorrelation, =452.77

termed a Variogram

Figure 1. A variogram relates the difference between sample values and their distance.
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Spatial autocorrelation exists if the differences between sample values systematically increase as
the distances between sample points becomes larger. The shape and consistency of the pattern of
points in the plot characterize the degree of similarity. In the figure, an idealized upward curve
is indicated. If the remaining point-pairs continue to be tightly clustered about the curve
considerable spatial autocorrelation is indicated. If they are scattered throughout the plot without
forming a recognizable pattern, minimal autocorrelation is present.

The “goodness of fit” of the points to the curve serves as an index of the spatial dependency— a
good fit indicates strong spatial autocorrelation. The curve itself provides relative weights for
the samples surrounding a location as it is interpolated— the weights are calculated from the
equation of the curve.

A polar variogram takes the concept a step further by considering directional bias as well as
distance. In addition to calculating distance, the direction between point-pairs is determined
using the “opposite-over-adjacent (tangent)” geometry rule. A polar plot of the results is
constructed with rings of increasing distance divided into sectors of different angular
relationships (figure 2).

Polar Var iogr A (Distance and Angle Dependency)

For the thre:; poinis shown bel?w, the separation of Dist = ( a + b ) 5

the three pairs can be summarized as ...

= ( (500-50)* + (100-50) ) 5
Point Pair Dist Angle =452.77

A (50,50), (100,200) 158.11 71.11 / )

B (50,50), (500,100) 452.77  6.34 Angle = arcTan (a/b)

C (100,200), (500,100) 412.31 -14.04

= ARCTAN ( (100-50) / (500-50) )
| =6.34

...the position in the polar grid summarizes the
distance and angle between pairs of points. The
“typical” difference between tle measured valies
of point pairs in each polar sector characterizes tie
distribution of the 2-D spatial autocorrelation,
termed a Polar Variogram

L
#2 (100,200)

#3 (500,100)

#l (50,50) b

Geographic Space Polar Variogram

Figure 2. A polar variogram relates the difference between sample values to both distance and
direction.
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Each point-pair plots within one of the sectors (shaded portion in figure 2). The difference
between the sample values within each sector forms a third axis analogous to the “data variation’
(Y-axis) in a simple variogram.

b

The relative differences for the sectors serve as the weights for interpolation. During
interpolation, the distance and angle for a location to its surrounding sample points are computed
and the weights for the corresponding sectors are used. If there is a directional bias in the data,
the weights along that axis will be larger and the matching sample points in that direction will
receive more importance.

The shape and pattern of the polar variogram surface characterizes the distance and directional
dependencies in a set of data— the X and Y axes depict distance and direction between points
while the Z-axis depicts the differences between sample values.

An idealized surface is lowest at the center and progressively increases. If the shape is a perfect
bowl, there is no directional bias. However, as ridges and valleys are formed directional
dependencies are indicated. Like a simple variogram, a polar variogram provides a graphical
representation of spatial dependency in a data set— it just adds direction to the mix of spatial
dependency assessments.
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