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For thousands of years, points, lines and polygons have been used to depict map features.  With 

the stroke of a pen a cartographer could outline a continent, delineate a highway or identify a 

specific building’s location.  With the advent of the computer, manual drafting of these data has 

been replaced by the cold steel of the plotter.   

 

In digital form these spatial data have been linked to attribute tables that describe characteristics 

and conditions of the map features.  Desktop mapping exploits this linkage to provide 

tremendously useful database management procedures, such as address matching, geo-query and 

routing.  Vector-based data forms the foundation of these techniques and directly builds on our 

historical perspective of maps and map analysis. 

 

Grid-based data, on the other hand, is a relatively new way to describe geographic space and its 

relationships.  Weather maps, identifying temperature and barometric pressure gradients, were an 

early application of this new data form.  In the 1950s computers began analyzing weather station 

data to automatically draft maps of areas of specific temperature and pressure conditions.  At the 

heart of this procedure is a new map feature that extends traditional points, lines and polygons 

(discrete objects) to continuous surfaces.            
 

 
Figure 1.  Grid-based data can be displayed in 2D/3D lattice or grid forms. 

 

The rolling hills and valleys in our everyday world is a good example of a geographic surface.  

The elevation values constantly change as you move from one place to another forming a 

continuous spatial gradient.  The left-side of figure 1 shows the grid data structure and a sub-set 

of values used to depict the terrain surface shown on the right-side. 

 

Grid data are stored as an organized set of values in a matrix that is geo-registered over the 

terrain.  Each grid cell identifies a specific location and contains a map value representing its 
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average elevation.  For example, the grid cell in the lower-right corner of the map is 1800 feet 

above sea level.  The relative heights of surrounding elevation values characterize the undulating 

terrain of the area. 

 

Two basic approaches can be used to display this information—lattice and grid.  The lattice 

display form uses lines to convey surface configuration.  The contour lines in the 2D version 

identify the breakpoints for equal intervals of increasing elevation.  In the 3D version the 

intersections of the lines are “pushed-up” to the relative height of the elevation value stored for 

each location.  The grid display form uses cells to convey surface configuration.  The 2D version 

simply fills each cell with the contour interval color, while the 3D version pushes up each cell to 

its relative height. 

 

The right-side of figure 2 shows a close-up of the data matrix of the project area.  The elevation 

values are tied to specific X,Y coordinates (shown as yellow dots).  Grid display techniques 

assume the elevation values are centered within each grid space defining the data matrix (solid 

back lines).  A 2D grid display checks the elevation at each cell then assigns the color of the 

appropriate contour interval.  
 

 
Figure 2.  Contour lines are delineated by connecting interpolated points of constant elevation 

along the lattice frame. 

   

Lattice display techniques, on the other hand, assume the values are positioned at the intersection 

of the lines defining the reference frame (dotted red lines).  Note that the “extent” (outside edge 

of the entire area) of the two reference frames is off by a half-cell*.  Contour lines are delineated 
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by calculating where each line crosses the reference frame (red X’s) then these points are 

connected by straight lines and smoothed.  In the left-inset of the figure note that the intersection 

for the 1900 contour line is about half-way between the 1843 and 1943 values and nearly on top 

of the 1894 value. 

 

Figure 3 shows how 3D plots are generated.  Placing the viewpoint at different look-angles and 

distances creates different perspectives of the reference frame.  For a 3D grid display entire cells 

are pushed to the relative height of their map values.  The grid cells retain their projected shape 

forming blocky extruded columns.  

 

 
Figure 3.  3D display “pushes-up” the grid or lattice reference frame to the relative height of the 

stored map values. 

 

3D lattice display pushes up each intersection node to its relative height.  In doing so the four 

lines connected to it are stretched proportionally.  The result is a smooth wireframe that expands 

and contracts with the rolling hills and valleys.  Generally speaking, lattice displays create more 

pleasing maps and knock-your-socks-off graphics when you spin and twist the plots.  However, 

grid displays provide a more honest picture of the underlying mapped data—a chunky matrix of 

stored values.   

____________________ 
Author's Note:  Be forewarned that the alignment difference between grid and lattice reference frames is a frequent 

source of registration error when one “blindly” imports a set of grid layers from a variety of sources. 
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Contour Lines versus Color Gradients 
for Displaying Spatial Information 
(GeoWorld, November 2012) 

(return to top of Topic) 
 

In mapping, there are historically three fundamental map features—points, lines and areas (also 

referred to as polygons or regions)—that partition space into discrete spatial objects 

(discontinuous).  When assembled into a composite visualization, the set of individual objects 

are analogous to arranging the polygonal pieces in a jigsaw puzzle and then overlaying the point 

and line features to form a traditional map display.  In paper and electronic form, each separate 

and distinct spatial object is stored, processed and displayed individually.   

 

By definition line features are constructed by connecting two or more data points.  Contour lines 

are a form of displaying information that have been used for many years and are a particularly 

interesting case when displaying information in the computer age.  They represent a special type 

of spatial object in that they connect data points of equal value.  A contour map is typically 

composed of a set of contour lines with intervening spaces generally referred to as contour 

intervals.  

 

In general usage, the word “line” in the term “contour line” has been occasionally dropped, 

resulting in the ill-defined terms of “contour” for an individual contour line and “contours” for a 

set of contour lines or contour intervals depending on whether your focus is on the lines or the 

intervening areas.   

 

The underlying concept is that contour lines are lines that are separate and distinct spatial objects 

that connect data points of equal value and are displayed as lines to convey this information to 

the viewer.  Historically these values represented changes in elevation to generate a contour map 

of a landscape’s undulating terrain, formally termed topographical relief.   

 

Today, contour lines showing equal data values at various data levels are used to represent a 

broad array of spatial data from environmental factors (e.g., climatic temperature/pressure, air 

pollution concentrations) to social factors (e.g., population density, crime rates) to business 

intelligence (e.g., customer concentration, sales activity).  Within these contexts, the traditional 

mapping focus has been extended into the more general field of data visualization. 

 

With the advent of the computer age and the associated increased processing power of the 

computer, a fourth type of fundamental map feature has emerged—surfaces—an uninterrupted 

gradient (continuous).  This perspective views space as a continuously changing variable 

analogous to a magnetic field without interruption of discrete spatial object boundaries.  In 

electronic form, a continuous surface is commonly stored as two-dimensional matrix (x,y) with a 

data value (z) at each grid location.  These data are often displayed as a 3-dimentional surface 

with the x,y-coordinates orienting the visualization plane in space and the z-value determining 

the relative height above the plane.   
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In general, a 2-dimensional rendering of surface data can be constructed two ways—using a 

continuous color gradient or by generating a set of contour lines connecting points of equal data 

value (see figure 1).   

 

As shown in the figure, the color gradient uses a continuum of colors to display the varying data 

across the surface.   The contour line display, on the other hand, utilizes lines to approximate the 

surface information.  

 

Contour intervals can be filled with a color or can be displayed as a solid background (left-side 

of figure 1).   For displays of contour lines, the lines convey the information to the view as a set 

of lines of constant values.  The contour intervals do not have constant values as they depict a 

range values. 

 

 
 

Figure 1. Surface displays using Contour Lines and Color Gradient techniques.  

 

Figure 2 shows some of the visual differences in the two types of display approaches.  The top 

portion of the figure depicts the positioning (Data Points) and storage of the spatial information 

(Data Values) that characterize surface data.  A reference grid is established and the data points 

are positioned at specific x,y-locations within the reference grid.  This arrangement is stored as a 

matrix of data values in a computer with a single value corresponding to each grid cell.  Both 
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contour lines and continuous color gradient displays use this basic data structure to store surface 

data. 

 

Differences between the two approaches arise, however, in how the data is processed to create a 

display and, ultimately, how the information is displayed and visualized.  Typically, color 

gradient displays are generated by assigning a color from a continuous spectrum to each grid cell 

based on the magnitude of the data value (lower left side of figure 2).  For example, the 1843 

value is assigned light green along the continuous red to green color spectrum.  The color-fill 

procedure is repeated for all of the other grid spaces resulting in a continuous color gradient over 

an entire mapped area thereby characterizing the relative magnitudes of the surface values. 

 

Contour line displays, on the other hand, require specialized software to calculate lines of equal 

data value and, thus, a visualization of a surface (right side of figure 2).  Since the stored data 

values in the matrix do not form adjoining data that are of a constant data value, they cannot be 

directly connected as contour lines.   

 

 
 

Figure 2. Procedures for creating surface displays using Color Gradient and Contour Line 

techniques.  
  

For example, the derivation of a “1900 value” contour line involves interpolating the implied 

data point locations for the line from the centers of the actual gridded data as shown in the figure.  

The two data values of 1843 to 1943 in the extreme lower right portion of the reference grid 

bracket the 1900 value.  Since the 1900 value is slightly closer to 1943, an x,y-point is positioned 

slightly closer to the 1943 grid cell.  Similarly, the data bracket for the 1990 and 1894 grid cells 

position a point very close to the 1894 cell.  The procedure is repeated for all data values that 
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bracket the desired 1900 contour line value, resulting in a series of derived x,y-points that are 

then connected and displayed as a constant line that represents “1900”.  

 

Figure 3 illustrates fundamental differences between the color gradient and contour line data 

visualization techniques.  The left side of the figure identifies the data values defining the surface 

that contain the 1900 contour line discussed above.  Note that these values are not constant and 

vary considerably from 1894 to 1994, so they cannot be directly connected to form a contour line 

at constant value.   

 

While the “lumpy bumpy” nature of a continuous data surface accurately portrays subtle 

differences in a surface, it has to be generalized to derive a contour line connecting points of 

constant data value.  The right side of the figure portrays the contour line floating at a fixed 

height of 1900 (note: the pink “1900 line” is somewhat enhanced to see it better). 

 

 
 

Figure 3. The x,y-coordinates position surface information that can be displayed as continuously 

varying grid cells of relative z-value heights (color gradient display) or as derived lines of 

constant value (contour line display). 

  

So what is the take-home from all this discussion?  First, surface data (continuous) and contour 

lines (discontinuous) are not the same in either theory or practice but are fundamentally different 

spatial expressions.  A continuous color gradient is effective when the underlying surface is a 

mathematical model or where the interval between physical measurements is very small.  In 

these cases, the continuous color gradient is limited only by the resolution of the display device. 
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Contour lines, on the other hand, are effective to display coarse data.  A contour line display 

creates a series of lines at constant values that somewhat “approximate” the gradient and provide 

the viewer with points of equal value that serve as references for the changing surface.   

 

For example, if a mountain region of Colorado has elevation measurements taken every 100 feet, 

it would be impossible to display the elevation of each individual square inch.  In this scenario, a 

series of contour lines describes the elevations in the region, with the understanding that the 

contour lines are neither precise nor capture small bumps or depressions that occur between the 

100 foot measurements.  If more detailed measurements are taken, contour lines can be drawn 

closer together, thus depicting greater detail of the underlying surface.   

 

However, drawing contour lines close together is ultimately limited both visually and 

computationally.  When contour lines are too close together, the lines themselves obscure the 

map, creating a useless blur.  In addition, the processing time required to compute and display a 

large number of contour lines renders the method impractical.    

 

This illustrates the beauty of the continuous color gradient and contour line techniques—they are 

not same, hence they have unique advantages and limitations that provide different data 

visualization footholds for different spatial applications.  

 

 

Setting a Place at the Table for Grid-
based Data  
(GeoWorld, June 2013) 

(return to top of Topic) 
 

First the bad news—spatial data structure, formats and storage schemes tend to be a deep dive 

into a quagmire of minutia from which few return.  The good news is that is the realm of vector 

data and this month’s journey is into the Land of Grids where things are quite regular and 

straight forward (for the most part).   

 

At its conceptual foundation, grid-based map data is simply a matrix of values with a specified 

number of rows and columns (configuration) that is referenced to a specific location on the 

earth’s surface (geo-registered).  It’s as if you tore out a spreadsheet and stretched and tugged 

until its rectangular boxes formed squares (grid cell) to cover a portion of the landscape.  The 

value assigned to each grid summarizes the characteristic or condition of a spatial variable (map 

layer) at that location.  Additional aligned worksheets piled on top (map stack) describe other 

important geographically-based variables—just a stack of numbers towering over a continuous 

set of regularly-spaced grid cells (analysis frame) depicting what occurs at every location 

throughout an area (see author’s note 1). 

 

There are no differing types of map features, irregular shapes, missing puzzle pieces, complex 

topology about neighboring pieces, overlapping borders, serially linked files or other 

confounding concepts to wade through.  It is just a set of organized grid cells containing 
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information about every location.  The only major difference in storage approaches is whether 

the matrices are stored as individual “files” or as a “table.”         

 

Figure 1 depicts the data organization for Esri’s Grid ASCII export format as a single 

independent “file.”  The first six records in the file identify the geo-registration and configuration 

information (bottom left-side of the figure).  Note that the geo-registration is identified in 

decimal degrees of latitude and longitude for the lower-left corner of the matrix.  The 

configuration is identified as the number of columns and rows with a specified cell size that 

defines the matrix.  In addition a “no data” value is set to indicate locations that will be excluded 

from processing.   

 

 
 

Figure 1. Storing grid maps as independent files is a simple and flexible approach that has been used for 

years.  

 

The remainder of the grid map file contains blocks of values defining individual rows of the 

analysis frame that are read left to right, top to the bottom, as you would read a book.  In the 

example, each row is stored as a block of 25 values that extends for 25 blocks for a total of 625 

values.  In a typical computer, the values are stored as double-precision (64 bit) floating point 

numbers which provides a range of approximately 10
−308

 to 10
308

 (really small to really big 

numbers) capable of handling just about any map-ematical equation.   

 

Each grid map is stored as a separate file and in the export format no legend or display 

information is provided.  However in native ArcGIS grid format, this ancillary information is 

carried and individual grid maps can be clipped, adjusted and resized to form a consistent map 

stack for analysis stored as a group of individual flat files. 

 

Topic18_files/image053.png


____________________________ 
From the online book Beyond Mapping III by Joseph K. Berry.  All rights reserved.  Permission to copy for educational use is granted.   
 

Page  11 
 

Figure 2 illustrates the alternative “table” format for storing grid-based mapped data.  In the 

table, each grid layer is stored as a separate column (field) with their common grid cell locations 

identified as an informational line (records).  Each line in the table identifies all of the spatial 

information for a given grid location in a project area.  In the example, strings of 25 values in a 

column define rows in the matrix read left to right.  However in this example, the matrix origin 

and the geo-registration origin align and the matrix rows are read from the bottom row up to the 

top.  The assignment of the matrix origin is primarily a reflection of a software developer’s 

background—lower-left for science types and upper-left for programmer types.  Configuration 

information, such as 99.94 feet for the cell size, is stored as header lines while the geo-

registration of a grid cell’s centroid can be explicitly stored as shown or implicitly inferred by a 

map value’s position (line#) in the string of numbers.  When map-ematical analysis creates a new 

map its string of map values is added to the table as a new column instead of being stored in an 

individual file.   

 

 
 

Figure 2.  Storing groups of commonly geo-referenced and configured grid maps in a table provides 

consistency and uniformity that facilitates map analysis and modeling.  

 

The relative advantages/disadvantages of the file versus table approach to grid map storage have 

been part of the GIS community debate for years.  Most GIS systems use independent files 

because of their legacy, simplicity and flexibility.  The geo-referencing and configuration of the 

stored grid maps can take any form and “on-the-fly” processing can be applied to account for the 

consistency needed in map analysis.   

 

However, with the increased influence of remotely sensed data with inter-laced spectral bands 

and television with interlaced signal processing, interest in the table approach has been on the 
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rise.  In addition, relational database capabilities have become much more powerful making 

“table maintenance” faster, less problematic and more amenable to compression techniques.        

 

Figure 3 shows the organizational structure for an early table-based system (MapCalc).  The top 

portion of the table identifies the common geo-registration and configuration information shared 

by all of the map layers contained in the map set.  In the example, there are 19 map layers listed 

whose values form an embedded table (bottom-left) as described in figure 2.   

 

 
 

Figure 3. Combining all three basic elements for storing grid maps (geo-registration/configuration, map 

values and legend/display) sets the stage for fully optimized relation database tables for the storage of 

grid-based data.          

 

The right-side of the figure depicts the storage of additional legend and display information for 

two of the map layers.  The three display considerations of Data Type (continuous or discrete), 

Display Type (lattice or grid) and Display Mode (2D or 3D) are identified and specific graphics 

settings, such as on/off grid mesh, plot cube appearance, viewing direction, etc., are contained in 

the dense sets of parameter specifications.   

 

Similarly, Legend Labeling and associated parameters are stored, such as assigned color for each 

display category/interval.  When a map layer is retrieved for viewing its display and legend 

parameters are read and the appropriate graphical rendering of the map values in the matrix is 

produced.  If a user changes a display, such as rotating and tilting a 3D plot, the corresponding 

parameters are updated.   

 

When a new map is created through map analysis its map name, map type and derivation 

command is appended to the top portion of the table; its map values are appended as a new field 
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to the table in the middle portion; and a temporary set of display and labeling parameters are 

generated depending on the nature of the processing and the data type generated.  While all this 

seems overwhelming to a human, the “mechanical” reading and writing to a structured, self-

documenting table is a piece-of-cake for a computer.   

 

The MapCalc table format for grid-based data was created in the early 1990s.  While it still 

serves small project areas very well (e.g., a few thousand acre farm or research site), modern 

relational database techniques would greatly improve the approach.   

 

For the technically astute, the full dB design would consist of three related tables: Map 

Definition Table containing the MapID (“primary key” for joining tables) and geo-

registration/configuration information, a Grid Layer Definitions Table containing the MapID, 

LayerID and legend/display information about the data layer, and a third Cell Definition Table 

containing MapID/LayerID plus all of the map values in the matrix organized by the primary key 

of MapID  RowNumber  ColumnNumber (see author’s note 2).   

 

Organizing the three basic elements for storing grid maps (geo-registration/configuration, map 

values and legend/display) into a set of linked tables and structuring the relationships between 

tables is a big part of the probable future of grid-based map analysis and modeling.  Also, it sets 

the stage for a follow-on argument supporting the contention that latitude/longitude referencing 

of grid-based data is the “universal spatial database key” (spatial stamp) that promises to join 

disparate data sets in much the same way as the date/time stamp—sort of the Rosetta Stone of 

geotechnology. 

_____________________________ 
Author’s Notes: 1) For a discussion of basic grid-based data concepts and terms, see the online book Beyond 

Mapping III, Topic 18, “Understanding Grid-based Data” posted at www.innovativegis.com/basis/MapAnalysis/.  

2) A generalized schema for a full grid-based database design is posted as an appended discussion.  

 

 

VtoR and Back! (Pronounced “V-tore”)  
(GeoWorld, December 2012) 

(return to top of Topic) 
 

The previous section described considerations and procedures for deriving contour lines from 

map surfaces.  The discussion emphasized the similarities and differences between 

continuous/gradient map surfaces (raster) and discontinuous/discrete spatial objects identifying 

points, lines and polygons (vector).   

 

Keep in mind that while raster treats geographic space as a continuum, it can store the three basic 

types of discrete map features—a point as a single grid cell, a line as a series of connecting cells 

and a polygon as a set of contiguous cells.  Similarly, vector can store generalizations of 

continuous map surfaces as a series of contour lines or contour interval polygons. 

 

Paramount in raster data storage is the concept of a data layer in which all of the categories have 

to be mutually exclusive in space.  That means that a given grid cell in a Water map layer, for 

example, cannot be simultaneously classified as a “spring” (e.g., category 1) and a “wetland” 

http://www.innovativegis.com/basis/MapAnalysis/
Table_schema.htm
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(e.g., category 2) at the same unless an additional category is specified for the joint condition of 

“spring and wetland” (e.g., category 12). 

 

Another important consideration is that each grid cell is assumed to be the same 

condition/characteristic throughout its entirety.  For example, a 30m grid cell assigned as a 

spring does not infer a huge bubbling body of water in the shape of a square— rather it denotes a 

cell location that contains a spring somewhere within its interior.  Similarly, a series of stream 

cells does not imply a 30m wide flow of water that moves in a saw-tooth fashion over the 

landscape— rather it identifies grid cells that contain a stream somewhere within their interiors. 

 

While raster data tends to generalize/lower the spatial precision of map object placement and 

boundary, vector data tends to generalize/lower the thematic accuracy of classification.  For 

example, the subtle differences in a map surface continuum of elevation have to be aggregated 

into broad contour interval ranges to store the data as a discrete polygon.  Or, as in the case of 

contour lines, store a precise constant value but impart no information for the space between the 

lines.      

 

Hence the rallying cry of “VtoR and back!” by grid-based GIS modelers echoes from the walls 

of cubicles everywhere for converting between vector-based spatial objects and raster-based 

grids.  This enables them to access the wealth of vector-based data, then utilize the thematic 

accuracy and analytical power of continuous grid-based data and upon completion, push the 

model results back to vector.   

 

Figure 1 depicts the processing steps for a frequently used method of converting vector polygons 

to contiguous groupings of grid cells.  It uses a point file of grid centers and “point in polygon” 

processing to assign a value representing a polygon’s characteristic/condition to every 

corresponding grid cell.  In essence it is a statistical technique akin to “dot grid” sampling that 

has been used in aerial photo interpretation and manual map analysis for nearly 100 years.  

While fast and straight forward for converting polygon data to cells, it is unsuitable for point and 

line features.  In addition, if large cell-sizes are used, small polygons can be missed.    

 



____________________________ 
From the online book Beyond Mapping III by Joseph K. Berry.  All rights reserved.  Permission to copy for educational use is granted.   
 

Page  15 
 

 
 

Figure 1. Basic procedure for centroid-based vector to raster conversion (VtoR). 

 

The top portion of figure 2 depicts an alternative approach that directly “burns” the vector 

features into a grid analogous to a branding iron or woodburning tool.  In the case of a point 

feature the cell containing its x,y coordinates is assigned a value representing the feature.  The 

tricky part comes into play if there is more than one point feature falling into a grid cell.  Then 

the user must specify whether to simply note “one or more” for a binary map or utilize a 

statistical procedure to summarize the point values (e.g, #count, sum, average, standard 

deviation, maximum, minimum, etc.).     

 

For line features there are two primary strategies for VtoR conversion— fat and thin.  Fat 

identifies every grid cell that is cut by a line segment, even if it is just a nick at the corner.  Thin, 

on the other hand, identifies the smallest possible set of adjoining cells to characterize a line 

feature.  While the “thin” option produces pleasing visualization of a line, it discards valuable 

information.  For example, if the line feature was of a stream, then water law 

rights/responsibilities are applicable to all of the cells with a “stream running through it” 

regardless of whether it is through the center or just in a corner.  
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Figure 2. Basic procedures for direct calculation-based vector to raster conversion (VtoR) and 

the reverse (RtoV). 
  

The upper-right inset in figure 2 illustrates the conversion of adjacent polygons.  The “fat” edges 

containing the polygon boundary are identified and geometry is used to determine which 

polygon is mostly contained within each edge cell.  All of the interior cells of a polygon are 

identified to finish the polygon conversion.  On rare occasions the mixed cells containing 

boundary line are given a composite number identifying the two characteristics/conditions.  For 

example, if a soil map had two soil types of 1 and 2 occurring in the same cell, the value 12 

might be stored for the boundary condition with 1 and 2 assigned to the respective interior cells.  

If the polygons are not abutting but scattered across the landscape, the boundary cells (either fat 

or thin) are assigned the same value as the interior cells with the exterior cells assigned a 

background value. 

 

The lower portion of figure 2 depicts approaches for converting raster to vector.  For single cell 

locations, the x,y coordinates of a cell’s centroid is used to position a point feature and the cell 

value is used to populate the attribute table.  On rare occasion where the cell value indicates the 

number of points contained in a cell, a random number generator is used to derive coordinates 

within the cell’s geographic extent for the set of points. 

 

For gridded line features, the x,y coordinates of the of the centroids (thin) are frequently used to 

define the line segments.  Often the set of points are condensed as appropriate and a smoothing 

equation applied to eliminate the saw-tooth jaggies.  A radically different approach converts the 

sides of the cells into a thin polygon capturing the area of possible inclusion of the grid-based 

line— sort of a narrow corridor for the line. 
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For gridded polygons, the sides at the edges of abutting cells are used to define the feature’s 

boundary line and its points are condensed and smoothed with topology of the adjoining 

polygons added.  For isolated gridded polygons, the outside edges are commonly used for 

identifying the polygon’s boundary line.  

 

 
 

Figure 3. Comparison of the basic approaches for identifying contour lines and contour interval 

boundaries. 
  

Figure 3 deals with converting continuous map surfaces to discrete vector representations.  A 

frequently used technique that generates true contour lines of constant value was described in 

detail in the previous section.  The procedure involves identifying cell values that bracket a 

desired contour level, then interpolating the x,y coordinates for points between all of the cell 

value pairs and connecting the new points for a line of constant value.  The black lines in figure 3 

identify the set interpolated 200 foot contour lines for a data set with values from 500 to 2500.   

   

Another commonly used technique involves slicing the data range into a desired number of 

contour intervals.  For example, 2500-500 / 10 = 200 identifies the data step used in generating 

the data ranges of the contour intervals (color bands) shown in the figure.  The first contour 

range from 500 to 700 “color-fills” with red all of the grid cells having values that fall within this 

range; orange for values 700 to 900; tan for values 900 to 1100; and so forth.  The 3D surface 

shows the contour interval classification draped over the actual data values stored in the grid.    

 

The added red lines in the enlarged inset identify the edges of the grid cell contour interval 

groupings.  As you can see in the enlarged 3D plot there are numerous differing data values as 

the red border goes up and down with the data values along the sawtooth edge.  As previously 
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noted this boundary can be smoothed (dotted red) and used for the borders of the contour interval 

polygons generated in the RtoV conversion.   

 

The bottom line (pun intended) is that in many mapped data visualizations the boundary (border) 

outlining a contour interval is not the same as a contour line (line of constant value).  That’s the 

beauty of grid vs. vector data structures— they are not the same, and therefore, provide for 

subtly and sometimes radically different perspectives of the patterns and relationships in spatial 

information—“V-tore and back!” is the rallying cry.    

 

 

Maps Are Numbers First, Pictures Later 
(GeoWorld, August 2002, pg. 20-21) 

(return to top of Topic) 
 

The unconventional view that “maps are numbers first, pictures later” forms the backbone for 

taking maps beyond mapping.  Historically maps involved “precise placement of physical 

features for navigation.”  More recently, however, map analysis has become an important 

ingredient in how we perceive spatial relationships and form decisions. 

 

Understanding that a digital map is first and foremost an organized set of numbers is 

fundamental to analyzing mapped data.  But exactly what are the characteristics defining a 

digital map?  What do the numbers mean?  Are there different types of numbers?  Does their 

organization affect what you can do with them?  If you have seen one digital map have you seen 

them all? 

 

In an introductory GIS course, concepts of “vector” and “raster” seem to dominate discussion of 

what a digital map is, and isn’t.  Within this context, the location of map features are translated 

into computer form as organized sets of X,Y coordinates (vector) or grid cells (raster).  

Considerable attention is given data structure considerations and their relative advantages in 

storage efficiency and system performance. 

 

However this geo-centric view rarely explains the full nature of digital maps.  For example 

consider the numbers themselves that comprise the X,Y coordinates—how does number type and 

size effect precision? A general feel for the precision ingrained in a “single precision floating 

point” representation of Latitude/Longitude in decimal degrees is*… 
 

  1.31477E+08 ft = equatorial circumference of the earth 
  1.31477E+08 ft / 360 degrees = 365214 ft/degree length of one degree Longitude  
  Single precision number carries six decimal places, so—  
     365214 ft/degree * 0.000001= .365214 ft *12 = 4.38257 inch precision 

 

Think if “double-precision” numbers (eleven decimal places) were used for storage—you likely 

could distinguish a dust particle on the left from one on the right. 

 

In analyzing mapped data, however, the characteristics of the attribute values are even more 

critical.  While textual descriptions can be stored with map features they can only be used in geo-
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query.  For example if you attempted to add Longbrake Lane to Shortthrottle Way all you would 

get is an error, as text-based descriptors preclude any of the mathematical/statistical operations. 

 

 
 

Figure 1. Map values are characterized from two broad perspectives—numeric and 

geographic—then further refined by specific data types. 

 

So what are the numerical characteristics of mapped data?  Figure 1 lists the data types by two 

important categories—numeric and geographic.  You should have encountered the basic numeric 

data types in several classes since junior high school.  Recall that nominal numbers do not imply 

ordering.  A 3 isn’t bigger, tastier or smellier than a 1, it’s just not a 1.  In the figure these data 

are schematically represented as scattered and independent pieces of wood. 

 

Ordinal numbers, on the other hand, do imply a definite ordering and can be conceptualized as a 

ladder, however with varying spaces between rungs.  The numbers form a progression, such as 

smallest to largest, but there isn’t a consistent step.  For example you might rank different five 

different soil types by their relative crop productivity (1= worst to 5= best) but it doesn’t mean 

that soil 5 is exactly five times more productive than soil 1.  

 

When a constant step is applied, interval numbers result.  For example, a 60
o
 Fahrenheit spring 

day is consistently/incrementally warmer than a 30
 o
F winter day.  In this case one “degree” 

forms a consistent reference step analogous to typical ladder with uniform spacing between 

rungs.   

 

A ratio number introduces yet another condition—an absolute reference—that is analogous to a 

consistent footing or starting point for the ladder, analogous to zero degrees “Kelvin” defined as 

when all molecular movement ceases.  A final type of numeric data is termed “binary.”  In this 
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instance the value range is constrained to just two states, such as forested/non-forested or 

suitable/not-suitable.   

 

So what does all of this have to do with analyzing digital maps?  The type of number dictates the 

variety of analytical procedures that can be applied.  Nominal data, for example, do not support 

direct mathematical or statistical analysis.  Ordinal data support only a limited set of statistical 

procedures, such as maximum and minimum.  Interval and ratio data, on the other hand, support 

a full set mathematics and statistics.  Binary maps support special mathematical operators, such 

as .AND. and .OR.    

 

Even more interesting (this interesting, right?) are the geographic characteristics of the numbers.  

From this perspective there are two types of numbers.  “Choropleth” numbers form sharp and 

unpredictable boundaries in space such as the values on a road or cover type map.  “Isopleth” 

numbers, on the other hand, form continuous and often predictable gradients in geographic 

space, such as the values on an elevation or temperature surface. 

 

Figure 2 puts it all together.  Discrete maps identify mapped data with independent numbers 

(nominal) forming sharp abrupt boundaries (choropleth), such as a covertype map.  Continuous 

maps contain a range of values (ratio) that form spatial gradients (isopleth), such as an elevation 

surface.  This clean dichotomy is muddled by cross-over data such as speed limits (ratio) 

assigned to the features on a road map (choropleth).  

 

Discrete maps are best handled in 2D form—the 3D plot in the top-right inset is ridiculous and 

misleading because it implies numeric/geographic relationships among the stored values.  What 

isn’t as obvious is that a 2D form of continuous data (lower-right inset) is equally as absurd. 
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Figure 2.  Discrete and Continuous map types combine the numeric and geographic 

characteristics of mapped data. 

 

While a contour map might be as familiar and comfortable as a pair of old blue jeans, the 

generalized intervals treat the data as discrete (ordinal, choropleth).  The artificially imposed 

sharp boundaries become the focus for visual analysis.  Map-ematical analysis of the actual data, 

on the other hand, incorporates all of the detail contained in the numeric/geographic patterns of 

the numbers ...where the rubber meets the spatial analysis road. 

 

 

Normalizing Maps for Data Analysis    

(GeoWorld, September 2002, pg. 22-23) 
(return to top of Topic) 

 

The last couple of sections have dealt with the numerical nature of digital maps.  Two 

fundamental considerations remain—data normalization and exchange.  Normalization involves 

standardizing a data set, usually for comparison among different types of data.  In a sense, 

normalization techniques allow you to “compare apples and oranges” using a standard “mixed 

fruit scale of numbers.” 
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The most basic normalization procedure uses a “goal” to adjust map values.  For example, a 

farmer might set a goal of 250 bushels per acre to be used in normalizing a yield map for corn.  

The equation, Norm_GOAL = (mapValue / 250) * 100, derives the percentage of the goal achieved 

by each location in a field.  In evaluating the equation, the computer substitutes a map value for a 

field location, completes the calculation, stores the result, and then repeats the process for all of 

the other map locations. 

 

Figure 1 shows the results of goal normalization.  Note the differences in the descriptive statistics 

between the original (top) and normalized data (bottom)—a data range of 2.33 to 295 with an 

average of 158 bushels per acre for the original data versus .934 to 118 with an average of 63.3 

percent for the normalized data. 

 

However, the histogram and map patterns are identical (slight differences in the maps are an 

artifact of rounding the discrete display intervals).  While the descriptive statistics are different, 

the relationships (patterns) in the normalized histogram and map are the same as the original 

data. 

 
 

 
Figure 1.  Comparison of original and goal normalized data. 

 

That’s an important point— both the numeric and spatial relationships in the data are preserved 

during normalization.  In effect, normalization simply “rescales” the values like changing from 
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one set of units to another (e.g., switching from feet to meters doesn’t change your height).  The 

significance of the goal normalization is that the new scale allows comparison among different 

fields and even crop types based on their individual goals— the “mixed fruit” expression of 

apples and oranges.  Same holds for normalizing environmental, business, health or any other 

kind of mapped data. 

  

An alternative “0-100” normalization forces a consistent range of values by spatially evaluating 

the equation Norm_0-100 = (((((mmaappVVaalluuee  ––  mmiinn))  **  110000))  //  ((mmaaxx  ––  mmiinn))))  ++  00..    The result is a rescaling 

of the data to a range of 0 to 100 while retaining the same relative numeric and spatial patterns of 

the original data.  While goal normalization benchmarks a standard value, the 0-100 procedure 

rescales the original data range to a fixed, standard range (see Author’s note).   

 

A third normalization procedure, standard normal variable (SNV), uses yet another approach.  It 

rescales the data based on its central tendency by applying the equation NNoorrmm__SSNNVV  ==  ((((mmaappVVaalluuee  

--  mmeeaann))  //  ssttddeevv))  **  110000..    The result is a rescaling of the data to the percent variation from the 

average.  Mapped data expressed in this form enables you to easily identify “statistically 

unusual” areas— +100% locates areas that are one standard deviation above the typical value; -

100% locates areas that are one standard deviation below. 

 

Map normalization is often a forgotten step in the rush to make a map, but is critical to a host of 

subsequent analyses from visual map comparison to advanced data analysis.  The ability to easily 

export the data in a universal format is just as critical.  Instead of a “do-it-all” GIS system, data 

exchange exports the mapped data in a format that is easily consumed and utilized by other 

software packages.  

 

 
 

Figure 2. The map values at each grid location form a single record in the exported table. 
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Figure 2 shows the process for grid-based data.  Recall that a consistent analysis frame is used to 

organize the data into map layers.  The map values at each cell location for selected layers are 

reformatted into a single record and stored in a standard export table that, in turn, can be 

imported into other data analysis software. 

 

Figure 3 shows the agricultural data imported into the JMP statistical package (by SAS).  Area 

(1) shows the histograms and descriptive statistics for the P, K and N map layers shown in figure 

2.  Area (2) is a “spinning 3D plot” of the data that you can rotate to graphically visualize 

relationships among the map layers.  Area (3) shows the results of applying a multiple linear 

regression model to predict crop yield from the soil nutrient maps.  These are but a few of the 

tools beyond mapping that are available through data exchange between GIS and traditional 

spreadsheet, database and statistical packages—a perspective that integrates maps with other 

technologies.           

 

 
 

Figure 3.  Mapped data can be imported into standard statistical packages for further analysis. 

 

Modern statistical packages like JMP “aren’t your father’s” stat experience and are fully 

interactive with point-n-click graphical interfaces and wizards to guide appropriate analyses.  

The analytical tools, tables and displays provide a whole new view of traditional mapped data.  

While a map picture might be worth a thousand words, a gigabyte or so of digital map data is a 

whole revelation and foothold for site-specific decisions. 
______________________ 

Author’s Note: the generalized rescaling equation is…  

    Normalize a data set to a fixed range of Rmin to Rmax= (((X-Dmin) * (Rmax – Rmin)) / (Dmax – Dmin)) + Rmin 

…where Rmin and Rmax is the minimum and maximum values for the rescaled range, Dmin and Dmax is the 

minimum and maximum values for the input data and X is any value in the data set to be rescaled. 
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Comparing Apples and Oranges 
(GeoWorld, April, 2011) 

(return to top of Topic) 
 

How many times have heard someone say “you can't compare apples and oranges,” they are 

totally different things.  But in GIS we see it all the time when a presenter projects two maps on 

a screen and uses a laser pointer to circle the “obvious” similarities and differences in the map 

displays.  But what if there was a quantitative technique that would objectively compare each 

map location and report metrics describing the degree of similarity?  …for each map location?   

…for the entire map area? 

 

Since maps have been “numbers first, pictures later” for a couple of decades, you would think 

“ocular subjectivity” would have been replaced by “numerical objectivity” in map comparison a 

long time ago.   

 

A few years back a couple of Beyond Mapping columns described grid-based map analysis 

techniques for comparing discrete and continuous maps (Statistically Compare Discrete Maps, 

GeoWorld, July 2006 and Statistically Compare Continuous Map Surfaces, GeoWorld, 

September 2006).  An even earlier column described procedures for normalizing mapped data 

(Normalizing Maps for Data Analysis, GeoWorld, September 2002).  Given these conceptual 

footholds I bet we can put the old “apples and oranges” quandary to rest. 

 

Consider the maps of Elevation and Slope shown in figure 1.  I bet you eyes are quickly 

assessing the color patterns and “seeing” what you believe are strong spatial relationships—dark 

greens in the NW and warmer tones in the middle NE.  But how “precise and consistent” can you 

be in describing the similarity?  …in delineating the similar areas?  …what would you do if you 

needed to assess a thousand of these patches? 

  

 
 

Figure 1. Elevation and Slope like apples and oranges cannot be directly compared.   
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Obviously Elevation (measured in feet) and Slope (measured in percent) are not the same thing 

but they are sort of related.  It wouldn’t make sense to directly compare the map values; they are 

apples and oranges after all, so you can’t compare them …right? 

 

That’s where a “mixed fruit” scale comes in.  As depicted in the top portion of figure 2, 

Elevation on the left and Slope on the right have unique raw data distributions that cannot be 

directly compared.    

 

The middle portion of the figure illustrates using the Standard Normal Variable (SNV) equation 

to “normalize” the two maps to a common scale.  This involves retrieving the map value at a grid 

location subtracting the Mean from it, then dividing by the Standard Deviation and multiplying 

by 100.  The result is a rescaling of the data to the percent variation from each map’s average 

value.   

 

 
 

Figure 2. Normalizing maps by the Standard Normal Variable (SNV) provides a foothold for 

comparing seemingly incomparable things.    

 

The rescaled data are no longer apples and oranges but a mixed fruit salad that utilizes the 

standard normal curve as a common reference, where +100% locates areas that are one standard 

deviation above the typical value and -100% locates areas that are one standard deviation below.  

Because only scalar numbers are involved in the equation, neither the spatial nor the numeric 

relationships in the mapped data are altered—like simply converting temperature readings from 

degrees Fahrenheit to Celsius.  
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The middle/lower portion of figure 2 describes the comparison of the two SNV normalized 

maps.  The normalized values at a grid location on the two maps are retrieved then subtracted 

and the absolute value taken to “measure” how far apart the values are.  For example, if Map1 

had a value of -100 (one Stdev below the mean) and Map 2 had a value of +200 (two Stdev 

above the mean) for the same grid location, the absolute difference would be 300—indicating 

very different information occurring at that location.    

 

Figure 3 shows the SNV comparison for the Elevation and Slope maps.  The red areas indicate 

locations where the map values are at dramatically different positions on the standard normal 

curve; blue tones indicate fairly similar positioning; and grey where the points are at the same 

position.  The median of the absolute difference is 52 indicating that half of the map area has 

differences of about half a standard deviation or less.   

 

 
 

Figure 3. The absolute difference between SNV normalized maps generates a consistent scale of 

similarity that can be extended to different map variables and geographic locations. 

 

In practice, SNV Comparison maps can be generated for the same variables at different locations 

or different variables at the same location.  Since the standard normal curve is a “standard,” the 

color ramp can fixed and the spatial pattern and overall similarities/differences among apples, 

oranges, peaches, pears and pomegranates can be compared.  All that is required is grid-based 

quantitative mapped data (no qualitative vector maps allowed). 

_____________________________ 
Author’s Note:  For more information on map Normalization and Comparison see the online book Beyond 

Mapping III, posted at www.innovativegis.com, Topic 18, Understanding Grid-based Data  and Topic 16, 

Characterizing Patterns and Relationships.  
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Correlating Maps and a Numerical 
Mindset 
(GeoWorld, May 2011) 

(return to top of Topic) 
 

The previous section discussed a technique for comparing maps, even if they were “apples and 

oranges.”  The approach normalized the two sets of mapped data using the Standard Normal 

Variable equation to translate the radically different maps into a common “mixed-fruit” scale for 

comparison. 

 

Continuing with this statistical comparison theme (maps as numbers—bah, humbug), one can 

consider a measure of linear correlation between two continuous quantitative map surfaces.  A 

general dictionary definition of the term correlation is “mutual relation of two or more things” 

that is expanded to its statistical meaning as “the extent of correspondence between the ordering 

of two variables; the degree to which two or more measurements on the same group of elements 

show a tendency to vary together.” 

 

So what does that have to with mapping?  …maps are just colorful images that tell us what is 

where, right?  No, today’s maps actually are organized sets of number first, pictures later.  And 

numbers (lots of numbers) are right down statistic’s alley.  So while we are severely challenged 

to “visually assess” the correlation among maps, spatial statistics, like a tireless puppy, eagerly 

awaits the opportunity. 

 

Recall from basic statistics, that the Correlation Coefficient (r) assesses the linear relationship 

between two variables, such that its value falls between -1< r < +1.  Its sign indicates the 

direction of the relationship and its magnitude indicates the strength.  If two variables have a 

strong positive correlation, r is close to +1 meaning that as values for x increase, values for y 

increase proportionally.  If a strong negative correlation exits, r is close to -1 and as x increases, 

the values for y decrease. 

 

A perfect correlation of +1 or -1 only occurs when all of the data points lie on a straight line.  If 

there is no linear correlation or a weak correlation, r is close to 0 meaning that there is a random 

or non-linear relationship between the variables.  A correlation that is greater than 0.8 is 

generally described as strong, whereas a correlation of less than 0.5 is described as weak. 

 

The Coefficient of Determination (r 2) is a related statistic that summarizes the ratio of the 

explained variation to the total variation.  It represents the percent of the data that is the closest to 

the line of best fit and varies from 0 <  r 2
 < 1.  It is most often used as a measure of how certain 

one can be in making predictions from the linear relationship (regression equation) between 

variables. 

 

With that quickie stat review, now consider the left side of figure 1 that calculates the correlation 

between Elevation and Slope maps discussed in the last section.  The gridded maps provide an 
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ideal format for identifying pairs of values for the analysis.  In this case, the 625 Xelev and Yslope 

values form one large table that is evaluated using the correlation equation shown.   

 

The spatially aggregated result is r = +0.432, suggesting a somewhat weak overall positive linear 

correlation between the two map surfaces.  This translates to r 2
 = 0.187, which means that only 

19% of the total variation in y can be explained by the linear relationship between Xelev and 

Yslope.  The other 81% of the total variation in y remains unexplained which suggests that the 

overall linear relationship is poor and does not support useful regression predictions.   

 

The right side of figure 1 uses a spatially disaggregated approach that assesses spatially localized 

correlation.  The technique uses a roving window that identifies the 81 value pairs of Xelev and 

Yslope within a 5-cell reach, then evaluates the equation and assigns the computed r value to the 

center position of the window.  The process is repeated for each of the 625 grid locations. 

 

 
 

Figure 1. Correlation between two maps can be evaluated for an overall metric (left side) or for 

a continuous set of spatially localized metrics (right side).   

 

For example, the spatially localized result at column 17, row 10 is r = +0.562 suggesting a fairly 

strong positive linear correlation between the two maps in this portion of the project area.  This 

translates to r 2
 = 0.316, which means that nearly a third of the total variation in y can be 

explained by the linear relationship between Xelev and Yslope.   
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Figure 2 depicts the geographic distributions of the spatially aggregated correlation (top) and the 

spatially localized correlation (bottom).  The overall correlation statistic assumes that the r = 

+0.432 is uniformly distributed thereby forming a flat plane.    

      

 Spatially localized correlation, on the other hand, forms a continuous quantitative map surface.  

The correlation surrounding column 17, row 10 is r = +0.562 but the northwest portion has 

significantly higher positive correlations (red with a maximum of +0.971) and the central portion 

has strong negative correlations (green with a minimum of -0.568).  The overall correlation 

primarily occurs in the southeastern portion (brown); not everywhere.  

 

The bottom-line of spatial statistics is that it provides spatial specificity for many traditional 

statistics, as well as insight into spatial relationships and patterns that are lost in spatially 

aggregated of non-spatial statistics.  In this case, it suggests that the red and green areas have 

strong footholds for regression analysis but the mapped data needs to be segmented and separate 

regression equations developed.  Ideally, the segmentation can be based on existing geographic 

conditions identified through additional grid-based map analysis.   

 

 
 

Figure 2. Spatially aggregated correlation provides no spatial information (top), while spatially 

localized correlation “maps” the direction and strength of the mutual relationship between two 

map variables (bottom)   

 

It is this “numerical mindset of maps” that is catapulting GIS beyond conventional mapping and 

traditional statistics beyond long-established spatially aggregated metrics—the joint analysis of 

geographic and numeric distributions inherent in digital maps provide the springboard. 
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_____________________________ 
Author’s Note:  For more information, see the online book Beyond Mapping III, posted at www.innovativegis.com, 

Topic 16, Characterizing Patterns and Relationships and Topic 28, Spatial Data Mining in Geo-Business. 

 

 

Multiple Methods Help Organize Raster 
Data  
(GeoWorld, April 2003, pg. 22-23) 

(return to top of Topic) 
 

Map features in a vector-based mapping system identify discrete, irregular spatial objects with 

sharp abrupt boundaries.  Other data types—raster images, pseudo grids and raster grids—treat 

space in entirely different manner forming a spatially continuous data structure.   

 

For example, a raster image is composed of thousands of “pixels” (picture elements) that are 

analogous to the dots on a computer screen.  In a geo-registered B&W aerial photo, the dots are 

assigned a grayscale color from black (no reflected light) to white (lots of reflected light).  The 

eye interprets the patterns of gray as forming the forests, fields, buildings and roads of the actual 

landscape.  While raster maps contain tremendous amounts of information that are easily “seen,” 

the data values simply reference color codes that afford some quantitative analysis but are far too 

limited for the full suite of map analysis operations.   

 

  
Figure 1.  A vector-based system can store continuous geographic space as a pseudo-grid. 

 

Pseudo grids and raster grids are similar to raster images as they treat geographic space as a 

continuum.  However, the organization and nature of the data are radically different.   
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A pseudo grid is formed by a series of uniform, square polygons covering an analysis area 

(figure 1).  In practice, each grid element is treated as a separate polygon—it’s just that every 

polygon is the same shape/size and they all abut each other—with spatial and attribute tables 

defining the set of little polygons.  For example, in the upper-right portion of the figure a set of 

discrete point measurements are stored as twelve individual “polygonal cells.”  The interpolated 

surface from the point data (lower-right) is stored as 625 contiguous cells.  

 

While pseudo grids store full numeric data in their attribute tables and are subject to the same 

vector analysis operations, the explicit organization of the data is both inefficient and too limited 

for advanced spatial analysis as each polygonal cell is treated as an independent spatial object.  A 

raster grid, on the other hand, organizes the data as a listing of map values like you read a 

book—left to right (columns), top to bottom (rows).  This implicit configuration identifies a grid 

cell’s location by simply referencing its position in the list of all map values.   

 

In practice, the list of map values is read into a matrix with the appropriate number of columns 

and rows of an analysis frame superimposed over an area of interest.  Geo-registration of the 

analysis frame requires an X,Y coordinate for one of the grid corners and the length of a side of a 

cell.  To establish the geographic extent of the frame the computer simply starts at the reference 

location and calculates the total X, Y length by multiplying the number of columns/rows times 

the cell size.    

 

 
Figure 2.  A grid-based system stores a long list of map values that are implicitly linked to an 

analysis frame superimposed over an area. 

 

Figure 2 shows a 100 column by 100 row analysis frame geo-registered over a subdued vector 

backdrop.  The list of map values is read into the 100x100 matrix with their column/row 

positions corresponding to their geographic locations.  For example, the maximum map value of 

92 (customers within a quarter of a mile) is positioned at column 67, row 71 in the matrix— the 

7,167
th

 value in the list ((71 * 100) + 67 = 7167).  The 3D plot of the surface shows the spatial 

distribution of the stored values by “pushing” up each of the 10,000 cells to its relative height.   
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In a grid-based dataset, the matrices containing the map values automatically align as each value 

list corresponds to the same analysis frame (#columns, # rows, cell size and geo-reference point).  

As depicted on the left side of figure 3, this organization enables the computer to identify any or 

all of the data for a particular location by simply accessing the values for a given column/row 

position (spatial coincidence used in point-by-point overlay operations).   

 

Similarly, the immediate or extended neighborhood around a point can be readily accessed by 

selecting the values at neighboring column/row positions (zonal groupings used in region-wide 

overlay operations).  The relative proximity of one location to any other location is calculated by 

considering the respective column/row positions of two or more locations (proximal 

relationships used in distance and connectivity operations). 

 

There are two fundamental approaches in storing grid-based data—individual “flat” files and 

“multiple-grid” tables (right side of figure 3).  Flat files store map values as one long list, most 

often starting with the upper-left cell, then sequenced left to right along rows ordered from top to 

bottom.  Multi-grid tables have a similar ordering of values but contain the data for many maps 

as separate field in a single table.   

 

 
Figure 3.  A map stack of individual grid layers can be stored as separate files or in a multi-grid 

table. 

 

Generally speaking the flat file organization is best for applications that create and delete a lot of 

maps during processing as table maintenance can affect performance.  However, a multi-gird 

table structure has inherent efficiencies useful in relatively non-dynamic applications.  In either 

case, the implicit ordering of the grid cells over continuous geographic space provides the 

topological structure required for advanced map analysis. 
_________________ 

Topic18_files/image023.png


____________________________ 
From the online book Beyond Mapping III by Joseph K. Berry.  All rights reserved.  Permission to copy for educational use is granted.   
 

Page  34 
 

Author's Note:   Let me apologize in advance to the “geode-ists” readership—yep it’s a lot more complex than 

these simple equations but the order of magnitude ought to be about right …thanks to Ken Burgess, VP R&D, Red 

Hen Systems for getting me this far. 

 

 

Use Mapping “Art” to Visualize Values    

(GeoWorld, June 2003, pg. 20-21) 
(return to top of Topic) 

 

The digital map has revolutionized how we collect, store and perceive mapped data.  Our paper 

map legacy has well-established cartographic standards for viewing these data.  However, in 

many respects the display of mapped data is a very different beast.   

 

In a GIS, map display is controlled by a set of user-defined tools—not the cartographer/publisher 

team that produced hardcopy maps just a couple of decades ago.  The upside is a tremendous 

amount of flexibility in customizing map display; the downside is a tremendous amount of 

flexibility in customizing map display.   

 

The display tools are both a boon and a bane as they require minimal skills to use but 

considerable thought and experience to use correctly.  The interplay among map projection, 

scale, resolution, shading and symbols can dramatically change a map’s appearance and thereby 

the information it graphically conveys to the viewer.   

 

While this is true for the points, lines and areas comprising traditional maps, the potential for 

cartographic effects are even more pronounced for contour maps of surface data.  For example, 

consider the mapped data of phosphorous levels in a farmer’s field shown in figure 1.  The inset 

on the left is a histogram of the 3288 grid values over the field ranging from 4.2 to 53.2 parts per 

million (ppm).  The table describes the individual data ranges used to generalize the data into 

seven contour intervals. 
 

 
Figure 1.  An Equal Ranges contour map of surface data. 

Topic18_files/image016.png


____________________________ 
From the online book Beyond Mapping III by Joseph K. Berry.  All rights reserved.  Permission to copy for educational use is granted.   
 

Page  35 
 

 

In this case, the contour intervals were calculated by dividing the data range into seven Equal 

Ranges.  The procedure involves: 1] calculating the interval step as (max – min) / #intervals= 

(53.2 – 4.2) / 7 = 7.0 step, 2] assigning the first contour interval’s breakpoint as min + step = 4.2 

+ 7.0 = 11.2, 3] assigning the second contour interval’s breakpoint as previous breakpoint + step 

= 11.2 + 7.0 = 18.2, 4] repeating the breakpoint calculations for the remaining contour intervals 

(25.2, 32.2, 39.2, 46.2, 53.2). 

 

The equally spaced red bars in the plot show the contour interval breakpoints superimposed on 

the histogram.  Since the data distribution is skewed toward lower values, significantly more map 

locations are displayed in red tones— 41 + 44 = 85% of the map area assigned to contour 

intervals one and two.  The 2D and 3D displays on the right side of figure 1 shows the results of 

“equal ranges contouring” of the mapped data. 

 

\ 

Figure 2.  Equal Count and +/- 1 Standard Deviation contour maps. 

 

Figure 2 shows the results of applying other strategies for contouring the same data.  The top 

inset uses Equal Count calculations to divide the data range into intervals that represent equal 

amounts of the total map area.   This procedure first calculates the interval step as total #cells / 
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#intervals= 3288 / 7 = 470 cells then starts at the minimum map value and assigns progressively 

larger map values until 470 cells have been assigned.  The calculations are repeated to 

successively capture groups of approximately 470 cells of increasing values, or about 14.3 

percent of the total map area.   

 

Notice the unequal spacing of the breakpoints (red bars) in the histogram plot for the equal count 

contours.  Sometimes a contour interval only needs a small data step to capture enough cells 

(e.g., peaks in the histogram); whereas others require significantly larger steps (flatter portions of 

the histogram).  The result is a more complex contour map with fairly equal amounts of colored 

polygons. 

 

The bottom inset in figure 2 depicts yet another procedure for assigning contour breaks.  This 

approach divides the data into groups based on the calculated mean and Standard Deviation.  

The standard deviation is added to the mean to identify the breakpoint for the upper contour 

interval (contour seven = 13.4 + 5.21= 18.61 to max) and subtracted to set the lower interval 

(contour one = 13.4 - 5.21= 8.19 to min).   

 

In statistical terms the low and high contours are termed the “tails” of the distribution and locate 

data values that are outside the bulk of the data— sort of unusually lower and higher values than 

you normally might expect.  In the 2D and 3D map displays on the right side of the figure these 

locations are shown as blue and pink areas.   

 

The other five contour intervals are assigned by forming equal ranges within the lower and upper 

contours (18.61 - 8.19 = 10.42 / 5 = 2.1 interval step) and assigned colors red through green 

with a yellow inflection point.  The result is a map display that highlights areas of unusually low 

and high values and shows the bulk of the data as gradient of increasing values. 

 

 
Figure 3. Comparison of different 2D contour displays. 
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The bottom line is that the same surface data generated dramatically different 2D contour maps 

(figure 3).  All three displays contain seven intervals but the methods of assigning the 

breakpoints to the contours employ radically different approaches.  So which one is right?  

Actually all three are right, they just reflect different perspectives of the same data distribution 

…a bit of the art in the “art and science” of GIS. 

 

 

What’s Missing in Mapping?    

(GeoWorld, April 2009) 
(return to top of Topic) 

 

We have known the purpose of maps for thousands of years—precise placement of physical 

features for navigation.  Without them historical heroes might have sailed off the edge of the 

earth, lost their way along the Silk Route or missed the turn to Waterloo.  Or more recently, you 

might have lost life and limb hiking the Devil’s Backbone or dug up the telephone trunk line in 

your neighborhood.   

 

Maps have always told us where we are, and as best possible, what is there.  For the most part, 

the historical focus of mapping has been successfully automated.  It is the “What” component of 

mapping that has expanded exponentially through derived and modeled maps that characterize 

geographic space in entirely new ways.  Digital maps form the building blocks and map-ematical 

tools provide the cement in constructing more accurate maps, as well as wholly new spatial 

expressions. 

 

For example, consider the left-side of figure 1 that shows both discrete (Contour) and continuous 

(Surface) renderings of the Elevation gradient for a project area.  Not so long ago the only 

practical way of mapping a continuous surface was to force the unremitting undulations into a set 

of polygons defined by a progression of contour interval bands.  The descriptor for each of the 

polygons is an interval range, such as 500-700 feet for the lowest contour band in the figure.  If 

you had to assign a single attribute value to the interval, it likely would be the middle of the 

range (600).   

 

But does that really make sense?  Wouldn’t some sort of a statistical summary of the actual 

elevations occurring within a contour polygon be a more appropriate representation?  The 

average of all of the values within the contour interval would seem to better characterize the 

“typical elevation.”   For the 500-700 foot interval in the example, the average is only 531.4 feet 

which is considerably less than the assumed 600 foot midpoint of the range. 

 

Our paper map legacy has conditioned us to the traditional contour map’s interpretation of fixed 

interval steps but that really muddles the “What” information.  The right side of figure 1 tells a 

different story.  In this case the polygons represent seven Districts that are oriented every-which-

way and have minimal to no relationship to the elevation surface.  It’s sort of like a surrealist 

Salvador Dali painting with the Districts melted onto the Elevation surface indentifying the 

coincident elevation values.  Note that with the exception of District #1, there are numerous 

different elevations occurring within each district’s boundary.   
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Figure 1. Visual assessment of the spatial coincidence between a continuous Elevation surface 

and a discrete map of Districts. 

 

One summary attribute would be simply noting the Minimum/Maximum values in a manner 

analogous to contour intervals.  Another more appropriate metric would be to assign the Median 

of the values identifying the middle value for a metric that divides the total frequency into two 

halves.  However the most commonly used statistic for characterizing the “typical condition” is a 

simple Average of all the elevation numbers occurring within each district.  The “Thematic 

Mapping” procedure of assigning a single value/color to characterize individual map features 

(lower left-side of figure 2) is fundamental to many GIS applications, letting decision-makers 

“see” the spatial pattern of the data.   

 

The discrete pattern, however, is a generalization of the actual data that reduces the continuous 

surface to a series of stepped mesas (right-side of figure 2).  In some instances, such as District 

#1 where all of the values are 500, the summary to a typical value is right on.  On the other hand, 

the summaries for other districts contain sets of radically differing values suggesting that the 

“typical value” might not be very typical.  For example, the data in District #2 ranges from 500 

to 2499 (valley floor to the top of the mountain) and the average of 1539 is hardly anywhere, and 

certainly not a value supporting good decision-making. 

 

So what’s the alternative?  What’s better at depicting the “What component” in thematic 

mapping?  Simply stated, an honest map is better.  Basic statistics uses the Standard Deviation 

(StDev) to characterize the amount dispersion in a data set and the Coefficient of Variation 

(Coffvar= [StDev/Average] *100) as a relative index.  Generally speaking, an increasing Coffvar 
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index indicates increasing data dispersion and a less “typical” Average— 0 to 10, not much data 

dispersion; 10-20, a fair amount; 20-30, a whole lot; and >30, probably too much dispersion to 

be useful (apologies to statisticians among us for the simplified treatise and the generalized but 

practical rule of thumb).  In the example, the thematic mapping results are good for Districts #1, 

#3 and #6, but marginal for Districts #5, #7 and #4 and dysfunctional for District #2, as its 

average is hardly anywhere.   

 

So what’s the bottom line?  What’s missing in traditional thematic mapping?  I submit that a 

reasonable and effective measure of a map’s accuracy has been missing (see Author’s Notes).  In 

the paper map world one can simply include the Coffvar index within the label as shown in left-

side of figure 2.  In the digital map world a host of additional mechanisms can be used to report 

the dispersion, such as mouse-over pop-ups of short summary tables like the ones on the right-

side of figure 2.   

 

 
 

Figure 2. Characterizing the average Elevation for each District and reporting how typical the 

typical Elevation value is.  

 

Another possibility could be to use the brightness gun to track the Coffvar—with the display 

color indicating the average value and the relative brightness becoming more washed out toward 

white for higher Coffvar indices.  The effect could be toggled on/off or animated to cycle so the 

user sees the assumed “typical” condition, then the Coffvar rendering of how typical the typical 

really is.  For areas with a Coffvar greater than 30, the rendering would go to white.  Now that’s 

an honest map that shows the best guess of typical value then a visual assessment of how typical 
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the typical is—sort of a warning that use of shaky information may be hazardous to you 

professional health. 

 

As Geotechnology moves beyond our historical focus on “precise placement of physical features 

for navigation” the ability to discern the good portions of a map from less useful areas is critical.  

While few readers are interested in characterizing average elevation for districts, the increasing 

wealth of mapped data surfaces is apparent— from a realtor wanting to view average home 

prices for communities, to a natural resource manager wanting to see relative habitat suitability 

for various management units, to a retailer wanting to determine the average probability of 

product sales by zip codes, to policemen wanting to appraise typical levels of crime in 

neighborhoods, or to public health officials wanting to assess air pollution levels for jurisdictions 

within a county.  It is important that they all “see” the relative accuracy of the “What 

component” of the results in addition to the assumed average condition.        
_____________________________ 
 

Author’s Notes: see http://www.innovativegis.com/basis/MapAnalysis/Topic18/Topic18.htm for an online discussion of the 

related concepts, structures and considerations of grid-based mapped data.  Discussion of the differences between map Precision 

and Accuracy is at http://www.innovativegis.com/basis/MapAnalysis/MA_Intro/MA_Intro.htm, “Determining Exactly Where is 

What.” 

 
(return to top of Topic) 

 
(Back to the Table of Contents) 

http://www.innovativegis.com/basis/MapAnalysis/Topic18/Topic18.htm
http://www.innovativegis.com/basis/MapAnalysis/MA_Intro/MA_Intro.htm
../Default.htm

