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Beyond Mapping III 
 

Topic 8 – Spatial Modeling Example 

(Further Reading) 

 

 
 

Map Analysis book 
 

 (Extending Optimal Path Analysis) 
 

’Straightening’ Conversions Improve Optimal Paths — discusses a procedure for spatially 
responsive straightening of optimal paths (November 2004)  

Use LCP Procedures to Center Optimal Paths — discusses a procedure for eliminating “zig-
zags” in areas of minimal siting preference (March 2006)  

Connect All the Dots to Find Optimal Paths — describes a procedure for determining an optimal 
path network from a dispersed set of end points (September 2005)  

 

 (Understanding Accumulation Surfaces) 
 

Building Accumulation Surfaces — reviews how proximity analysis and effective distance is 
used to construct accumulation surfaces (October 1997)  

Analyzing Accumulation Surfaces — describes how two surfaces can be analyzed to determine 
the relative travel-time advantages (November 1997)  

Determining Optimal Path Corridors — describes a technique for determining the set of nth best 
paths between two points (December 1997)  

Analyzing Stepped Accumulation Surfaces — describes a technique for forcing an optimal path 
through a series of points (January 1998)  

 

<Click here> for a printer-friendly version of this topic (.pdf). 

 
(Back to the Table of Contents) 

______________________________ 
 

 

(Extending Optimal Path Analysis) 

 

’Straightening’ Conversions Improve 
Optimal Paths 
(GeoWorld, November 2004)    

(return to top of Topic)  
 

Previous discussions (July through August 2003 BM columns) have addressed the basics of 

optimal path routing.  The basic Least Cost Path (LPC) method described consists of three basic 

steps: Discrete Cost Map, Accumulated Cost Surface and Optimal Route (see Author’s Notes).  
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In addition, an optional fourth step to derive an Optimal Corridor can be performed to indicate 

routing sensitivity throughout a project area. 

 

Key to optimal path analysis is the discrete cost map that establishes the relative “goodness” for 

locating a route through any grid cell in a project area.  However, the traditional LCP approach 

only considers the landscape/terrain conditions between start and end points without direct 

consideration of differences in the feature itself, such as material costs.   

 

For example, the same optimal solution is generated for both low and high priced pipe in 

constructing a pipeline.  In the case of higher priced pipe, a straighter route can save millions of 

dollars.  What is needed is a modified LCP procedure that considers feature characteristics as 

well as landscape/terrain conditions in optimizing route layout.  

 

Simple geometry-based techniques of line smoothing, such as spline function fitting, are 

inappropriate as they fail to consider intervening conditions and can result in the route being 

adjusted into unsuitable locations as it is “smoothed.”  The following discussion describes a 

robust technique for “straightening” an optimal path that works within the LCP framework.  

 

The approach modifies the discrete cost map by making disproportional increases to the lower 

map values.  This has the effect of straightening the characteristic minor swings in routing in the 

more favorable areas (low values) while continuing to avoid unsuitable areas.  

 

 
 

Figure 1. The LCP Straightening Equation progressively adjusts the relative importance of 

straightening the optimal path solution. 

 

The left side of figure 1 graphically depicts the modified LCP approach.  The solid diagonal line 

indicates a 1 to 1 conversion that does not change the discrete cost values (1= very good to 9= 
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very bad for locating a route).  The dashed lines indicate conversions that incrementally increase 

the cost values with the greatest adjustments occurring at the lower values. 

 

The general conversion equation based on an anchored straight line is—  
  

Y = i + (( 9 – i ) / 9 ) * X  

 

…and can be extended to the LCP Straightening Equation— 
 

Adj_Cost_Map = i + (( 9 – i ) / 9 ) * Cost_Map  

 

…where all of the values on the discrete cost map are converted.  The adjusted cost map is used 

to derive an accumulated cost surface from the starting location, that in turn is used to derive the 

optimal path from the ending location. 

 

Figure 2 shows several examples of applying the LCP Straightening Equation.  The top portion 

of the figure identifies the derivation of the optimal path using the standard LCP procedure.  

Note how the traditional solution has numerous “hooks, curves and deflections” responding to 

subtle differences in the shape of the accumulation surface based on the lower values of the 

discrete cost map.  

 

 
 

Figure 2. Examples of Applying the LCP Straightening Equation. 

 

The lower portion of the figure shows several straightened optimal paths.  They were derived by 

applying the conversion equation to the discrete cost values, then completing the LCP procedure.  

Note the smoothing of the accumulation surfaces as larger straightening factors (i) are used.  This 

is similar to the “tension” factors used in geometric line smoothing techniques; however an 
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important difference is that in this case, the straightening is spatially responsive to the unique 

pattern of suitable and unsuitable areas.  A visual comparison of the two 3D plots shows a 

general smoothing of the accumulated cost surface but retention of the major trends in the 

surface (peaks and valleys).  

 

Also note that the length of the route is progressively shorter for the straightened optimal paths.  

This information can be used to estimate pipe cost savings ((1.32 – 0.95) / 1.32) * 100 = 28% 

savings for Path 3).  Decision-makers can balance the benefits of the savings in materials with 

the costs of traversing less-optimal conditions along the straightened route as compared to the 

non-straighten optimal path.  

 

The traditional unadjusted optimal path is best considering only landscape/terrain conditions, 

whereas the adjusted path also favors “straightness” wherever possible.  In many applications, 

that’s an improvement on an optimal path (as well as an oxymoron).  
______________________________ 

Author’s Note: see www.innovativegis.com/basis/present/Oil&Gas_04/ , A Web-based Application for Identifying 

and Evaluating Alternative Pipeline Routes and Corridors, Berry, J.K., M.D. King and C. Lopez, for a paper 

describing the basic LCP procedure applied to pipeline routing.  
  

 

 

Use LCP Procedures to Center Optimal 
Paths 
(GeoWorld, March 2006)    

(return to top of Topic)  
 

Earlier sections have dealt with basic Least Cost Path (LCP) procedures for identifying optimal 

routes considering a set of map layers establishing siting preferences.  The previous section 

discussed an improvement on the basics involving the straightening the often twisted and 

contorted routes derived using LCP.  The discussion in this section will extend the improvements 

to tackle “centering” a route. 

 

For example, routing pipelines involves identifying the optimal path between two points 

considering an overall cost surface of the relative siting preferences throughout a project area.  

This established procedure works well in areas where there are considerable differences in siting 

preferences but generates a “zig-zag” route in areas with minimal differences.  The failure to 

identify straight routes under these conditions is inherent in the iterative (wave-like) grid-based 

distance measurement analysis considering only orthogonal and diagonal movements to adjacent 

cells. 

 

The left side of Figure 1 shows the Optimal Corridor for a proposed route.  The central (blue) 

zone identifies the “valley bottom” of the Total Accumulation Surface that contains the optimal 

path.  The middle zone (green) and outer zone (yellow) identify areas that contain less optimal 

but still plausible solutions. 
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Figure 1. “Flat areas” on the valley bottom of the Total Accumulation Surface (blue) are the 

result of artificial differences in optimal paths induced by grid-based distance measurement 

restriction to orthogonal and diagonal movements. 

 

The right side of the figure shows what causes the flat areas.  The white route identifies the 

common locations for the optimal paths generated for both ways (Start-to-End and End-to-Start 

paths).  These locations identify the true optimal path in areas with ample preference guidance.   

However in areas with constant cost surface values, the grid-based procedure seeks orthogonal 

and diagonal movements instead of a true bisecting line.  For the area in the lower-right portion 

of the project area, the Start to End path (bright green upper route) shifts over and diagonally 

down.  In the same area, the End to Start path (light blue lower route) shifts over and diagonally 

up. 

 

The true optimal path traversing this area of minimal difference in siting preferences is a line 

splitting the difference between the two directional routes.  Figure 2 depicts the steps for 

delineating a centered route through these areas.  The first step generates a Total Accumulation 

Surface in the basic LCP manner described in the earlier discussions.  

 

This map is normally used to identify optimal path corridors, however in this instance it is used 

to isolate the flat areas in need of centering.  A binary map of the flat areas is created in step 2 by 

reclassifying areas to zero that are from the minimum value on the surface to the minimum value 

+ .707.  The .707 value is determined as one-half a diagonal grid space movement of 1.414 

cells—the “zig-zag distance” causing the flat areas. 

 

The third step determines the interior proximities for the flat areas, with larger values indicating 

the center between opposing edges.  The proximity values then are converted to adjustment 

weights from nearly zero to 1.0 (step 4).  This process involves inverting the proximity values 

then normalizing to the appropriate range by using the equation— 
 

Weight = ((0.00 – ProxValue) + maxProxValue) / (maxProxValue + .01) 
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The result is a map with the value 1.0 assigned to all locations that do not need centering and 

increasing smaller fractional weights for areas requiring centering.  This map then is multiplied 

by the original cost surface (step 5) with effect of lowering the cost values where centering is 

needed.  The result is analogous to cutting a groove in the cost surface for the flat areas that 

forces the optimal path through the centered groove (step 6).  

 

 
 

Figure 2. Procedural steps for centering an optimal path in areas with minimal differences in 

siting preference. 

 

Figure 3 shows the results of the centering procedure.  The red line bisects the problem areas and 

eliminates the direction dependent “zig-zags” of the basic LCP procedure in areas of minimal 

siting preference. 

 

In practice, an automated procedure for eliminating zig-zags might not be needed as the optimal 

route and corridor identified are treated as a Strategic Phase solution for comparing relative 

advantages of alternative routes.  A set of viable alternative routes is further analyzed during a 

Design Phase with a siting team considering additional, more detailed information within the 

alternative route corridors.  During this phase, the zig-zag portions of the route are manually 

centered by the team—the art in the art and science of GIS. 
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Figure 3. Comparison of directional optimal paths and the centered optimal path. 

 

 

Connect All the Dots to Find Optimal 
Paths 
(GeoWorld, September 2005)    

(return to top of Topic)  
 

Effective Distance forms the foundation for generating optimal paths.  As discussed in the 

previous sections, the “Least Cost Path” method for determining the optimal route of a linear 

feature is a well-established grid-based GIS technique.  It consists of three basic steps: Discrete 

Cost Map, Accumulated Cost Surface and Optimal Route.  An additional step to derive an 

Optimal Corridor can be performed to indicate routing sensitivity throughout a project area. 

 

The derivation of the Accumulated Cost Surface is the critical step.  It involves calculating the 

effective distance from a starting location to all other locations considering the “relative 

preference” for favoring or avoiding certain landscape conditions.  

 

For example, the left side of figure 1 shows a set individual cost maps for establishing a 

gathering network of pipelines for a natural gas field.  The thinking is that routing should— 
  

1) avoid areas within or near sensitive areas,  

2) avoid areas that are far from roads, and  

3) avoid areas of steep terrain, and 4) avoid areas of unsuitable soils.   
 

These considerations first are calibrated to a common preference scale (0= no-go, 1= favor 

through 9= avoid) and then averaged for an overall Discrete Cost Map (favor green, avoid red 

and can’t cross black).  
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In turn, the discrete cost map is used to calculate effective distance (minimal cost) from the 

collection point to all accessible locations in the project area.  The result is the Accumulated Cost 

Surface shown in 2D and 3D on the right side of figure 1.  Note that the surface forms a bowl 

with the collection point at the bottom, increasing total cost forming the incline (green to red) 

and the inaccessible locations forming pillars (black). 

 

 
 

Figure 1. Relative preferences are used to identify the minimal overall cost of constructing a 

route from a collection point to all accessible locations in a project area. 

 

Normally, a single end point is identified, positioned on the accumulated surface and the steepest 

downhill path determined to delineate the optimal route between the starting and end points.  

However in the case of a gathering network, a set of dispersed end points (individual wells) 

needs to be considered.  So how does the computer simultaneously mull over bunches of points 

to identify the set of Optimal Paths that converge on the collection point? 

 

Actually, the process is quite simple.  In an iterative fashion, the optimal path is identified for 

each of the wells.  What is different is the use of a summary grid that counts the number of paths 

passing through each map location.  The map in figure 2 shows the result where red dots identify 

the individual wells, blue paths individual feeder lines and cooler to warmer tones an increasing 

number of commonly served wells.  

 

FurtherReading_Topic8_files/image019.png


From the online book Beyond Mapping III by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy 
for educational use is granted.  
Page 9 
 

 
 

Figure 2. Optimal path density identifies the number of routes passing through each map 

location. 

 

The green, yellow and red portions of the network identify trunk lines that service numerous end 

points (>10 wells).  The collection point services all 92 wells (77 from the western trunk line and 

15 from the eastern trunk line). 

 

Figure 3 shows the gathering network superimposed on the optimal corridors for the western and 

eastern trunk lines.  The corridors indicate the spatial sensitivity for sighting the two trunk 

lines— placement outside these areas results in considerable increase in routing costs.  

 

In the example, a pressurized network is assumed.  However, a gravity-feed analysis could be 

performed by analyzing a terrain surface (relative elevation) and hydraulic flows.  The process is 

analogous to delineating watersheds then determining the optimal network trunk lines within 

each area.  

 

Another extension would be to minimize the length of the feeder lines.  For example, the three 

lines in the upper-left corner might be connected sooner to minimize pipeline materials costs.  

There are a couple of ways to bring this into the analysis— 1) re-run the model using the trunk 

line as the starting location, and/or 2) use a straightening factor as discussed in the previous 

section. 
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Figure 3. The optimal corridors for routes serving numerous end points indicate the spatial 

sensitivity in siting trunk lines. 

 

The ability to identify the number of optimal paths from a set of dispersed end points provides 

the foothold for deriving an optimal feeder line network.  It also validates that modern map 

analysis capabilities takes us well-beyond traditional mapping to entirely new concepts, 

techniques and paradigms spawned by the digital map revolution.  

 

  
  (Understanding Accumulation Surfaces) 

 

Building Accumulation Surfaces 
(GeoWorld, October 1997)    

(return to top of Topic)  
 

“You can’t get there from here,” is often the flippant response when you ask directions.  In many 

cases it is a perfectly valid answer, as movement in geographic space is rarely as straight forward 
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as a straightedge.  Often there are several possible contorted paths that twist and turn in route to a 

destination.  However, from the perspective of a ruler there is only one— the “shortest, straight 

line connecting two points.”  Several Beyond Mapping columns (see Author’s Note) have 

addressed the concepts and procedures behind GIS’s capability to derive effective distance and 

optimal paths that respect intervening barriers.  This column begins a series on the nature and 

analysis of accumulation surfaces, the basis of modeling real world movement. 

 

Before we get too far, a quick review might be prudent.  Recall that there are primarily two ways 

to represent distance in a GIS; the Pythagorean Theorem which mathematically mimics a ruler 

and the “splash” algorithm which mimics a drunken sailor weaving through a maze of barriers.  

There’s a good chance you remember Pythagorean’s equation of  
 

c
2
 = a

2
 + b

2
  

 

from the brow-beating you received about right triangles in high school geometry.  The GIS 

simply uses its X and Y coordinates in solving the equation for simple distance between two 

points. 

 

The splash technique tracking simple proximity is a bit less familiar, but conceptually easy. 

Imagine what happens to a still pond when you toss in a rock— splash, then one ripple away, 

then another, and another, until there’s a whole set of concentric rings about the starting point.  If 

the conditions are the same throughout the pond, the effect is similar to nailing a ruler at the 

starting point and spinning it, while scribing the set of circles formed by dragging the ruler’s tic 

marks.  In a raster GIS, the width of each “wavelength ring” is one grid space.  The result isn’t a 

single value identifying the length of the shortest, straight line between two points; it’s a map of 

values identifying all of the shortest, straight line distances between everywhere and the starting 

point. 

 

Now imagine tossing a handful of rocks— splash, one ripple, two ripple, three ripple, and more 

radiate out from each of the starting points.  When two wave-fronts meet, they stop, with the 

point of interference identifying the halfway location between starting points.  The same holds 

true if you toss in a set of sticks or pieces of plywood, with the ripple patterns conforming to the 

irregular shapes of the objects.  The end result of all the simulated splashing and crashing in a 

GIS is a map of the shortest, straight line distance from everywhere to the nearest starting 

location; be it a point, line or polygon.  

 

Inset (a) in figure 1 is a 3-D plot of a simple proximity surface radiating from a single point.  The 

lowest point on the surface contains the value 0 denoting it is “0 grid spaces away” from the 

start.  Note that the surface is shaped like a bowl with increasing values (1 away, 2 away, etc.).  

The farthest location is in the upper right corner at a distance of 60 grid spaces * 100 meters/grid 

space = 6000 meters.  The slight depressions along the orthogonal and diagonal are a result of the 

slight directional variations in distances computed by the “splash” algorithm. 

 

But continuous, straight line movement forming a perfect proximity bowl is rarely the case in the 

real world.  Effective proximity respects movement around and through barriers— not “as the 

crow flies,” but as the crow might walk.  Suppose there’s a lake in the way.  Inset (b) identifies 

the absolute barrier itself as being infinitely far away (fear/reality of drowning).  It assigns a 

value of 69 grid spaces to the farthest accessible location, indicating that the distance is a 900 
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meters farther as a result of going around the lake.  The set of all map values indicate the 

“shortest, but not necessarily straight” distances between the starting point and all of the other 

locations. 

 

 
 

Figure 1. Accumulation surfaces showing the effects of relative and absolute barriers in mapping 

proximity. 

 

However, in winter the lake freezes and can be crossed, though at a much slower pace on the 

slippery ice.  It represents a relative barrier that impedes movement, but doesn’t totally restrict 

movement.  Inset (c) shows the accumulation surface assuming you walk 5 times slower on the 

ice.  The results show that it’s still 6900 meters to the opposite corner by going around the lake.  

However, if you gingerly trek to the center of the lake, it is equivalent to traveling 8300 meters 

on open land. 

 

Previous Beyond Mapping columns described how the computer finds the “steepest, downhill 

path” along an accumulation surface to locate the “not necessarily straight” optimal path.  It’s 

analogous to a rain drop’s route along the surface, which effectively retraces the wave front that 

got there first.  In fact, the rain drop paths from all locations identify the “shortest, but not 

necessarily straight set of lines connecting the origin to everywhere.”  Information you with a 

ruler, or Pythagoras with a calculator, could never derive.  But it’s chicken-feed compared to 

what insights you get by analyzing the surfaces themselves— as you will see in the next section. 
_____________________  

Author’s Note: see GIS World issues September 1989 through May 1990 for discussion of the fundamental concepts 

in measuring effective distance and October 1992 through December 1992 for discussion of the procedures 

involved. These columns have been compiled into Topics 3 and 9, respectively, in Beyond Mapping: Concepts, 

Algorithms and Issues in GIS (Berry, 1993; GIS World Books).  
 

 

Analyzing Accumulation Surfaces 
(GeoWorld, November 1997)    
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(return to top of Topic)  
 

The previous section described the nature of accumulation surfaces and how they are built.  

Recall that the “splash” algorithm measures distance from a starting location like waves that 

spread out when a rock is tossed into a pond.  The result is a 3-dimensional surface with 

increasing distance reflected by the increasing Z values stored in a matrix of grid cells.  If 

absolute and relative barriers to movement are introduced, these surfaces form unique shapes 

with ridges and peaks similar to terrain surfaces. 

 

However, unlike terrain surfaces, accumulation surfaces are always increasing (no “false-

bottoms”) from point, line and areal features designated as starting locations.  Areas with 

absolute barriers are identified as infinitely far away and form sheer walls on an accumulation 

surface.  Relative barriers form hills and ridges as they identify areas that are passable, but at an 

increased “cost” (e.g., more time) per grid space.  The valleys emanating from the starting 

locations locate corridors of minimal resistance to movement along the accumulation surface. 

 

 
 

Figure 1. The difference between two proximity surfaces identifies the relative geographic 

advantage between two locations. 

 

For example, the two surfaces on the extreme left of figure 1 characterize movement from 

opposing corners through the horseshoe-shaped relative barrier described in the previous section.  

The proximity from Start1 generally increases from left to right, while the increase from Start2 is 

in the opposite direction.  Both surfaces show an abrupt increase when the relative barrier is 

encountered, however the shape of the resulting “hill” is different due to the different directions 

of the distance waves and the shape of the barrier. 

 

Since the horseshoe ends of the barrier face Start1, the waves easily move into the center before 

interacting with the increased impedance of the barrier.  The formation of a ridge indicates that 

some of the waves moved around the barrier, then penetrated the barrier from the back side.  Any 

location along the ridge is equally distant from the start by moving to either side of hill.  
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The locations on the back side of the ridge, however, are optimally connected to Start1 by 

moving down the hill to the right and around the barrier… a counter-intuitive move.  Neither 

ruler nor Pythagoras’ Theorem suggest that you must initially move away from Start1 to begin 

the optimal route connecting the location to Start1.  That’s because they simply assume that all 

movement is in a straight line connecting two points— an extremely limiting assumption in the 

real world of complex barriers. 

 

The vertical line intersecting both surfaces identifies a map location that is 63 grid spaces from 

Start1 and only 5 from Statrt2.  Since these “shortest, but not necessarily straight” distances are 

stored at the same column, row position in the two proximity matrices, they can be easily 

retrieved and their difference computed (63 - 5 = 58).  If this is done for all locations, a 

difference surface (S1-S2 Surface inset in the middle of the figure) is generated identifying the 

relative advantage between Start1 and Start2 access for all locations throughout the project area.    

 

The “0” line identifies locations that are equally distant between the two starting locations.  It’s 

similar to the “perpendicular bisector” you might remember from high school geometry, except it 

is bent and twisted reflecting the effect of the intervening barrier on actual movement.  The sign 

of the difference indicates who has the advantage— negative values identify locations where 

Start1 has an advantage; positive values indicate a Start2 advantage.  The magnitude of the value 

identifies the strength of the advantage.  The two surfaces on the right isolate the relative 

advantages for both starting locations.  Similar advantage surfaces can be derived for additional 

starting locations, keeping in mind that the “starters” can be any combination of point, line or 

areal features. 

 

In the example, a +58 denotes a location with a strong advantage for Start2 access… it would be 

stupid to trek all the way to Start1.  If you were a thirsty animal (or pub patron), why would you 

travel the extra distance?  The liquid libations would have to be a lot better, or the ambiance and 

other thirsty organisms much more to your liking.  If that were the case, then the relative 

attractiveness of starter locations can be incorporated into the derivation of the accumulation 

surfaces (termed “gravity” modeling). 

 

Accumulation surface analysis provides valuable information for a wide array of applications.  

Natural resource managers use the technique to identify “home ranges” and “corridors of 

movement” based on the arrangement of landscape features.  Instead assuming a simple distance 

of “within a two mile radius” of an animal’s burrow, an effective distance home range based on 

absolute (e.g., river) and relative (e.g., cover type preferences) barriers can modeled. 

 

Similarly, a retail market analyst can model the “home range” of a particular breed of shopper by 

characterizing the road network (e.g., speed limit) and ancillary attractions (e.g., areas of 

interest).  Or in-store shopper habitat can be modeled using the aisles like roads and department 

fixtures as attractions; even “blue-light specials” could be modeled as dynamic features in a real 

time system.  Traffic flows, whether in-store, across town or in the wild are similar beasts from a 

GIS analysis perspective.  The absolute and relative barriers might change, but the basic 

application model (GIS procedure) remains the same.  Next time we will consider other 

accumulation surface analyses… what do you think would happen if you added two 

accumulation surfaces?  What information would the summation surface provide? 
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__________________________________  

Author’s Note: for “hands-on” experience in deriving and analyzing accumulation surfaces, see exercises TMAP2, 

TUTOR5, TUTOR6 and TU-RESP in the Tutorial Map Analysis Package (tMAP) software (Berry, 1993; GIS World 

Books).  (DOS-based TMAP is no longer available and was replaced in 1998 by MapCalc Tutorial software available for free 

download from www.innovativegis.com).  
 

 

Determining Optimal Path Corridors  
(GeoWorld, December 1997)    

(return to top of Topic)  
 

The first section in this series described the construction and fundamental nature of accumulation 

surfaces.  The second section discussed an analysis procedure for mapping relative geographic 

advantage that involved subtracting two surfaces.  This time we will investigate the interpretation 

of slope and aspect of an accumulation surface and what information is derived if we add the 

surfaces. 

 

 
 

Figure 1. The sum of two proximity surfaces identifies the optimal path between two locations as 

the lowest values, while increasing values identify the “opportunity cost” of forcing a path 

through any location. 

 

Recall that as distance increases from a location(s) the values can be plotted as a 3-dimensional 

surface, like those shown in the left portion of figure 1.  The lowest point on the surface 

identifies the starting location(s) as zero units away from itself.  All other locations contain 

increasing distance values forming the characteristic “bowl-shape” of an accumulation surface. 

 

Effective distance (as opposed to “simple,” straight-line distance) can be derived by introducing 

absolute and relative barriers to movement.  The “hill” in the Starter1 and Starter2 proximity 

surfaces reflect the increased impedance of a horseshoe-shaped barrier in the center of the map 

area.  Each grid space on a friction map is coded with the “relative cost” of traversing that 

location.  Note that the increased impedance is translated into the steeper slopes for the barrier 

area.  Therefore a slope map of an accumulation surface unmasks the relative ease of optimal 

travel through each grid space. 
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The notion of “optimal movement” embedded in an accumulation surface is important.  The 

“splash” algorithm used to build the surface considers movement from the eight surrounding 

cells to each location.  The accumulated distance and the relative impedance for each of the eight 

potential “steps” is evaluated.  The least costly step, in terms of total movement, is assigned.  

Therefore an aspect map of an accumulation surface unmasks the direction of optimal movement 

through each grid space. 

 

That’s a lot of spatially-specific information— the rate and direction of optimal movement 

throughout a map area.  It allows us to relax the assumption that “everything moves in a straight 

line and with equal impedance.”  In fact, things rarely move as simply as they respond to the 

complex patterns of absolute and relative barriers existing in the real world.  Slope and aspect 

maps of an accumulation surface allow us to track the conditions of that complex movement at 

each map location. 

 

As described in the first article, the optimal path from any location to the origin is identified as 

the steepest downhill route over the surface.  In the second article, we found that subtracting two 

accumulation surfaces located the bisecting line between the origins as 0 (equidistant).  The sign 

of the distance value on the difference map indicated which origin was closer, and its magnitude 

indicated how much closer.  

 

For example, a wildfire response model might generate a proximity map for two fire stations 

considering both on and off-road movement.  Subtracting the maps locates the effective dividing 

line between the two stations.  In retail marketing, the halfway line is extended into a broad band 

indicating a “combat zone” for customers.  Areas outside the band have distinct proximity 

advantages, while the real battles are waged in the combat zone where there the differences are 

marginal. 

 

If subtracting accumulation surfaces creates useful information, what do you think happens when 

you add them?  The surface in the center of the figure is a summation surface for the example 

data.  The highlighted location is 63 from Start1 and 5 from Start2, therefore it is a total of 68 

units away from both.  In other words, the best path connecting the two origins which passes 

through that location has a total length of 68.  In fact, the values on the summation surface 

identify the length of the “best” path forced through any given map location. 

 

The optimal path between the two locations (identified by the line in both the 2-D and 3-D 

views) contains the set of locations having the lowest values (a valley connecting the origins).  

The saw-toothed appearance of the optimal path is an artifact of arithmetic rounding, the nature 

of the splash algorithm and minimal friction outside the barrier in the center.  Values above the 

valley floor indicate the length of the best, but sub-optimal paths forced through any location. 

 

The difference between the lowest value on the summation surface and the value at any other 

location identifies the “opportunity cost” of forcing a route through that location.  The 2-D 

display shows fixed intervals of increasing opportunity cost— you would be crazy to force a 

route through the darker tones (a mountain of opportunity cost).  Next time we will look at 

constructing a “stepped accumulation surface” which enables you to determine the optimal path 
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connecting a series of predetermined stops along the way.  As a sneak preview, it involves 

minimizing successive accumulation surfaces… whew!  

  

 

Analyzing Stepped Accumulation 
Surfaces 
(GeoWorld, January 1998)    

(return to top of Topic)  
 

Hopefully you have survived the last three sections on accumulation surfaces.  The discussion 

has covered the fundamental nature of accumulation surfaces (increasing distance waves), 

procedures for determining relative geographic advantage (subtract), ways to uncover direction 

and speed of optimal movement (slope and aspect), and a technique for determining the corridor 

of optimal movement (add).  If that wasn’t enough, now we get to extend the discussion to a 

“stepped accumulation surface” and “optimal path zones.” 

 

 
 

Figure 25.4. Stepped Accumulation Surface. Proximity from the first point is calculated (shaded) 

until the second point is reached, then proximity from that point is calculated (non-shaded) 

forming the next tier; the individual optimal paths along each of the stepped proximity surfaces 

forms the overall optimal route. 

 

Suppose you know several places you would like to visit, but don’t have a particular route in 

mind.  If you know the order you would like to visit them, then a directed stepped accumulation 

surface is for you.  Simply generate an effective proximity surface from the first location like 

those discussed in the previous articles— splash, one ripple, two ripple, three ripple and more 

radiate out from your starting point.  The familiar bowl of proximity identifies the effective 

distance to all other locations.  All you have to do is “stream” down the bowl from your second 

point of interest to identify the optimal path. 

 

Now, construct a proximity surface from the second point to everywhere, and stream your third 

stop down it for the second leg of your journey.  The left side of Figure 1 shows a stepped 

accumulation surface for the first two segments of a “directed hike” through the demonstration 

area.  The shaded area shows the portion of the proximity surface from the start until the 
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concentric ripples encountered the second point.  The non-shaded area picks up the count by 

adding the proximity from there to all other locations.  The result is a two-tiered surface similar 

to a spiral staircase.  If you stream down the stepped accumulation surface from the third stop, it 

first flows down the top tier to the second stop, then continues down to the first point (right side 

of Figure 1). 

 

Additional stops are considered by repeating the successive construction of “proximity bowls” 

and streaming down them for sequential optimal path segments.  An undirected procedure allows 

the computer to determine a spatially efficient ordering of the points.  You simply identify a 

starting location, the points you need to visit and the computer calculates the optimal route 

connecting them.  The solution spreads out from the first point until it encounters the closest 

visitation point, then streams down the truncated proximity surface for the first leg.  The next tier 

spreads out until it encounters its closest point and streams down for the next leg.  The process 

continues until all of the visitation points have been evaluated.  If you intend to return to the 

starting point, the home leg considers the starting point and is evaluated last. 

 

The undirected, stepped accumulation surface technique (whew …quite a mouthful) is similar to 

the classic “traveling salesman” problem in network analysis.  However, it provides a solution in 

continuous space, respecting the complex reality of absolute and relative barriers.  This is 

important if the traveling salesman doesn’t have a car, or if the mover isn’t constrained to a 

bunch of lines, like a herd of elk, or shoppers in a store. 

 

In a recent project (see Author’s Note), we encoded the floor plan for a retail superstore (98,000 

1-foot grids), translating the fixtures into absolute barriers and congested areas into relative 

barriers.  Shelving locations were identified on each fixture and linked to product codes.  The 

checkout records for each market basket were used to “place” each item purchased on the 

appropriate shelf.  These visitation points were evaluated for the “plausible” path used to collect 

the items between the front door and the cash register at the exit. 

 

 
 

Figure 2. Route Proximity Surface. Proximity from the optimal route identifies the distance to the 

closest segment of the route for every location in a project area; the influence zone of each 

segment along the route identifies which segment is the closest. 
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Granted, a shopper could do “a random walk” to collect the items, but a shopper with a mission 

who knows the store, would be foolish to veer off the calculated route.  Also, the consideration 

of several thousands of paths over a period of time converges on a map of relative in-store 

shopper activity.  The analysis was summarized in hourly time-steps, displayed as normalized 

thematic maps, and animated to show the ebb and flow of shopper activity throughout the day. 

 

The right side of Figure 2 shows the zones of influence for each leg of the optimal route.  The 

locations within each zone are optimally connected to a particular segment.  So, how might one 

use such information?  In the shopper example, the distance from a shopper’s path can be 

interpreted as geographic impedance that must be overcome to veer off stride.  Influence zones 

locate areas along a common portion of a shopper’s route.  Overlaying these data with in-store 

departments, sales density surfaces and item categories produces a lot of information about 

shelving for retail marketing types.  How might you use accumulation surfaces? …it’s up to your 

innovative mind. 
_________________________  

Author’s Note: see discussion on “analyzing in-store shopping patterns” in February through April 1998 BM 

columns. 
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