

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 1

Beyond Mapping II

Topic 6 – Alternative Data
Structures

Spatial Reasoning book

Are You a GIS Dead Head? — describes the structuring of traditional Raster data using implicit
topology based on the row/column positioning in a matrix

Raster is Faster, but Vector is Correcter — describes the structuring of traditional Vector data
using explicit topology linking spatial and attribute tables

How are your QUADS and TINS? — describes alternative Quadtree and Triangular Irregular
Network data formats

Rasterized Lines and Vectorized Cells — describes specialized offshoots of traditional raster
and vector data formats

<Click here> for a printer-friendly version of this topic (.pdf).

(Back to the Table of Contents)

Are You a GIS Dead Head?
(GeoWorld, May 1995)

(return to top of Topic)

Even if you're new to GIS, you may have encountered the scholarly skirmishes between the

raster heads and the vector heads. Like other religious crusades, the principles in these debates

often are lost to mind-sets reflecting cultural exposure and past experience. More often than not,

however, most of us just become catatonic when the discussion turns to GIS data structures. But

what the heck-it's worth another try.

Let's review the basic tenets of vector and raster data, then extend this knowledge to the actual

data structures involved. Vector data use sets of X,Y coordinates to locate three basic types of

landscape features: points, Iines, and areas. For example, a typical water map identifies a spring

as a dot (one X,Y coordinate pair), a stream as a squiggle (a set of connected X,Y coordinates),

and a lake as a glob (a set of connected X,Y coordinates closing on itself and implying its

interior). Raster data use an imaginary grid of cells to represent the landscape. Point features are

stored as individual column/row entries in the grid; lines are identified as a set of connected

cells; and areas are distinguished as all of the cells comprising a feature.

That traditional representation constrains geographical phenomena to three user-defined

http://www.innovativegis.com/basis/Books/spatial.htm
BM_II_T6.pdf
http://www.innovativegis.com/basis/MapAnalysis/ChronList/ChronologicalListing.htm

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 2

conditions (points, lines, and areas) and two GIS expressions (vector and raster). I bet this

conceptual organization is fairly comfortable, and might even be familiar. But that's only half

the problem— the user/GIS representation has to be translated into a database/hardware

structure. At that step most of us simply glaze over and leave such details to the GIS jocks.

Actually, the concepts aren't too difficult and they can help us understand much about different

systems, the frustrations we may encounter, and the future direction of GIS.

Figure 1. A file containing a matrix of numbers (attribute values) characterizes each cell of an

imaginary grid. An alternative structure uses a standard database file containing the

column/row identifiers for each cell followed by attribute fields, such as soil type and elevation.

Let's consider some structures for raster data. The left side of figure l shows an imaginary grid

superimposed on a typical soil map (more appropriately termed a "data layer'). The center

portion of the figure identifies a matrix of numbers with a numerical value assigned to each cell.

In that case, the value represents a particular type of soil, and its position in the matrix indicates

its location. To the computer, however, the matrix isn't a two dimensional array but simply one

long list of numbers. The first number represents the upper-left corner of the matrix and the rest

are ordered from left to right, top to bottom. Another map for the same area, say elevation,

would be stored as a separate ordered sequential file: This is the simplest and most frequently

used raster data structure.

An offshoot of raster structure is used for most remote sensing data. Each cell in the grid

represents a small area of Earth's surface where a satellite collected spectral data. The numbers

record relative amounts of energy, such as blue, green, and red light radiating from the surface.

The set of values for each energy level represents a single data layer that can be arranged as a

matrix and stored separately. These data, however, are stored more efficiently as an interlaced

BM_II_T6_files/image006.png

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 3

matrix, with all of the measurements for each cell stored sequentially. For example, the first

three values might represent the blue, green, and red light measurements for the upper-left cell,

with the following triplets of values for the other cells sequenced as before-left to right, top to

bottom.

The interlaced structure has a significant advantage in point-by-point processing, because all

information is contained in a single file and available as the computer methodically steps through

the matrix. The computer doesn't have to open three separate files, then read blue, green, and red

values scattered all over the disk. As a result, you have a lot less disk thrashing and a happier

computer. That may not seem like a big deal, but considering that a typical Landsat Thematic

Mapper scene contains seven data layers for about 36 million cells (that's more than 250 million

numbers), even a slight increase in storage efficiency is cyber heaven.

The interlaced structure might be neat and tidy for remote sensing data, but it's inappropriate for

a general GIS. First, it's tough to add a new map. It means extra room must be made to insert

the new values by reading the first three values from the original file, writing them to a new file,

inserting the first new value, and then repeating the process for the other million or so cells. Oh

yes, and then delete the original file. And you have the same problem if you want to delete a

map. Second, because the information for each data layer is dispersed (every third value), it’s

difficult to compress the redundancy found in a typical map. Finally, any processing involving

neighboring cells requires extra work as the computer must continually jump back and forth in

the file to get values for the ceils above, below, right, and left of the target ceil. In short, the

interlaced structure is best for specialized applications involving a fixed number of maps

constrained to cell-by-cell processing, such as most remote sensing data processing.

So what else do we have in raster structures? Consider the right side of figure 1. The structure

uses a standard database file (a “database table") with the column/row entries of the matrix

explicitly stored as "fields" (i.e., separate columns). The subsequent fields contain the listing of

values for various data layers. Note that the set of soil values under V1 corresponds to the left-

hand column of the matrix. If there was room in the figure to list the rest of the values in the

field, the next set would replicate the next column to the right in the matrix, then the next, and so

on. The V2 listing depicts similarly organized elevation values.

Now comes the advantage. Suppose you want to find all locations (i.e., cells) that contain soil

type 4 and are more than 550 feet in elevation. Simply enter a Structured Query Language

(SQL) command and the computer searches field columns V1 and V2 for the specified condition.

A new field (V3) will be appended containing the results. It's easy, because you use a standard

database file under the control of a standard database management program. A standardized

structure makes it easy for GIS programmers, because they don't have to write all the code that's

already in the database "engine." Also, it allows you to store and process text string

designations, as well as numerical values. More importantly, it makes it easy on the user,

because the command uses the same format as a normal office database.

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 4

The problem lies with the computer. It hates appending new fields to an existing table. Also, the

number of fields in a single table is constrained. The solution is a series of indexed tables, with

each cell's designation serving as the common link. With an indexed structure the computer can

easily "thread" from one table to another. Actually, there are good arguments for storing each

data layer as a separate indexed table. Creating, modifying, or deleting a map is a breeze,

because it affects only one table rather than a field embedded in a complex table. That seems to

brings us back to where we began— one map, one file. In that instance however, each map is a

standard indexed database table with all of the rights, privileges, and responsibilities of your

office database. It puts raster GIS where it should be— right in the middle of standard database

technology. As we'll see in the next section, vector GIS has been there all along.

Raster is Faster, but Vector is Correcter
(GeoWorld, June 1995)

(return to top of Topic)

Your computer really loves raster data— a cell on one map is at the same position on all others.

A couple of "hits-to-disk" and it knows everything about a cell location. A few more hits up,

down, left and right and it knows everything about a location's entire neighborhood. In fact, it

can "walk" from one location to another and find everything it needs to know along the way,

right from the hard disk. Its world is pre-defined in little byte-size pieces that are just right.

However, the computer-endearing qualities of consistency and uniformity put raster data at odds

with the human psyche (and a lot of reality). We see the unique character of each map feature—

a cute little jog here, a little bulge there. The thought of generalizing these details into a set of

uniform globs is cartographic heresy.

So what does it cost your computer, in terms of data structure, to retain the spatial precision you

demand? First, because every map feature is unique, a complex data structure is required.

Consistency and uniformity are out; uniqueness and irregularity are in. More importantly,

processing involves threading through a series of linked files (called "tables" in database speak),

mathematically constructing map features, calculating the implied coincidence, then

reconstructing the new data structure linkages; all that just to know the property line isn't 100

feet over there ... picky, picky.

Figure 1 identifies the basic elements of vector data structure. It begins with a points table,

attaching coordinates to each point used in the construction of map features. Most systems use

latitude and longitude as their base coordinates. That's a good choice, as it's a spherical

coordinate system that accurately locates points anywhere on Earth's surface. It's a problem,

however, when you want to relate points, such as measuring distances, bearings, or planimetric

areas.

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 5

Figure 1. A set of f files links coordinates, arcs, and features to describe location. A standard

database file links each feature to its attributes, such as soil type and elevation.

In three dimensions, seemingly simple calculations involve solid geometry and ugly equations

that bring even powerful computers to their knees. Plus, the three-dimensional answers can't be

drawn on a flat screen. The solution is to carry a user-specified map projection scheme and

planar coordinate system (e.g., Universal Transverse Mercator), then translate on-the.fly. Now

the computer can work in any two-dimensional rendering you choose and easily display the

results on your screen or plotter ... happy computer, happy you.

For point features, the point table and its two-dimensional translation specifications are linked

directly to another indexed file containing descriptive information, called "attributes," about each

point. If this information depicted soil samples, you could query the attribute table for all of the

samples that have a pH less than 7 and available phosphorus exceeding 30 parts per million. The

results from the attribute query simply "threads" to the coordinates of the subset of points

meeting the conditions, then plots them at blinding speed in the vibrant color of your choice.

Line and area features are a bit more complicated because the various connections among sets of

points need to be specified. When you view a human-compatible map of water features you

intuitively note which stream is connected to which stream by the network of blue squiggles.

You note that lakes are blue globs with a squiggle in and another out. But the computer's point

file is just a huge pile of unrelated numbers. The first level of organization is a linked arcs table.

The file groups the points into connected sets of arcs, forming the map features. In figure 1,

points Pl, P2, P3, and P4 are connected to form arc A1. Similarly, arcs A2, A3, and A4 are

BM_II_T6_files/image014.png

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 6

defined by their linked coordinates.

The features table puts it all together in geographic space by linking the “arcs” to actual map

features. In the example, feature F7 is formed by linking arcs A1, A2, A3, and A4. The

corresponding arcs table identifies which points are involved, with the coordinates in the points

table ultimately tying everything to the ground. At the top of this scheme is a linked info table

with the attribute data for each map feature. In the example, feature F7 is identified as having

soil type 4 (field V1) and an average elevation o1723 (field V2).

There, that's not too bad—conceptually. The tough part comes when you try to put it all into

practice with about 100,000 polygons. That’s when each vendor's "secret ingredients" of the

general vector recipe take hold. Without giving away any corporate secrets, let's take a look at

some of the "tweaking" possibilities.

In addition to the link to the points, the arc and feature tables often contain topological and other

information. For example, note that arc A1 forms a shared boundary between features F7 and F8

as listed in the "Topo" field of the arcs table (7/8). For maps composed of contiguous polygons

(e.g., soils, cover type, ownership, and census tracts) a search of this field immediately identifies

the adjoining neighbors for any map feature. Many systems store frequently used geometric

measurements— such areas as depicted in the "Topo" field of the features table (22.1 acres).

The alternative to these tweaks in data-structure design is a lot of computational thrashing and

bashing each time they're needed.

Line networks use topological information to establish which arcs are interconnected and the

nature of their connections. In a stream network it depicts the direction of water flow. In a road

network it characterizes all possible routes from any location to ail other locations. To describe

the linkage embedded fully, however, a new element must be introduced: the “node.” These

special points are indicated in the figure as the large dots at the ends of each arc (P1, P4, P6, and

P11). Nodes represent locations where things are changing, such as the separation of adjacent

soil units along a soil boundary. Some systems store nodes in a separate table, while others

simply give them special recognition in the points table. The information associated with a node

reflects the type of data and the intended processing.

If the length of each arc is stored, the computer can find the distance from a location to all other

locations by simply summing the intervening arcs along a route. If an average speed is stored for

each arc, the answer will be in travel-time. But what about one-way streets and the relative

difficulty of left and right turns at each intersection or node? Attach that information to the

nodes and the computer will make the appropriate corrections as it encounters the intersections

along a route. Similarly, an accumulated distance from a location to its surroundings can be

determined by keeping a running sum of the arc distances, respecting the "turntable" information

at each node. Once that's known it's an easy matter to determine the optimal path (shortest time

or distance) from any location to the starting point.

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 7

All is for naught, though, if your data structure hasn't been tweaked to carry the extra topological

and calibration information. It should be apparent that, unlike raster data structures, vector data

structures can be radically different. Ingenuity and programming dexterity are critical factors, as

is the matching of data design to intended applications and hardware. That's the tough part; there

isn't a universal truth in vector data structure. The onus is on you to pick the right one for your

applications, then understand it enough to take it to its limits.

How are your QUADS and TINS?
(GeoWorld, July 1995)

(return to top of Topic)

The original raster and vector data structures have been around a long time. The basic concepts

of representing a landscape as a set of grid cells or a set of connected points are about as old as

cartography itself. The technical refinements required for a functioning GIS, however, evolve

continually. About the time I think we've reached the pinnacle of data structure design, someone

comes out with a new offshoot. The only folks who think they have it all are overzealous

marketers. The technical types keep their heads down, constantly looking for more effective

ways to characterize mapped data.

Most raster systems can perform run-length compression, which compacts along the rows or the

columns. For example, consider the matrix and its row-compressed translation in Table 1. The

run-length data structure uses just 44 numbers to represent the 162 numbers in the full matrix. It

uses "value through column” pairs of numbers to compact redundancy along a row. For

example, the first row is read "value from column 1 (assumed) through column 7, value 2 from

column 8 (last column plus one) through column 17, and value 3 from column 18 through

column 18." That format is particularly useful in map display. Instead of "hitting disk" for the

color-fill-pattern value at each cell, the computer reads the pattern designation and simply

repeats the pattern specified by the column spread. That's a savings in storage and increased

performance-a win-win situation.

Table 1. Example of Run-Length Encoding (1 = Open Water, 2 = Meadow, 3 = Forest)

Full Matrix

Run-Length (Row) Encoding

111111122222222223 1,7,2,17,3,18 …1 thru 7, 2 thru 17, 3 thru 18

111111122222222233 1,7,2,16,3,18 …1 thru 7, 2 thru 16, 3 thru 18

111111122222222333 1,7,2,15,3,18 …1 thru 7, 2 thru 15, 3 thru 18

111111222222223333 1,6,2,14,3,18 …1 thru 6, 2 thru 14, 3 thru 18

111113333333333333 1,5,3,18 …1 thru 5, 3 thru 18

111113333333333333 1,5,3,18 …1 thru 5, 3 thru 18

111113333333333333 1,5,3,18 …1 thru 5, 3 thru 18

111333333333333333 1,3,3,18 …1 thru 3, 3 thru 18

111333333333333333 1,3,3,18 …1 thru 3, 3 thru 18

So why don't we compress in the row and column directions at the same time and get even more?

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 8

In effect, that's what a quadtree data structure does. It's an interesting second cousin to the

traditional raster data structure that uses a cascading set of grid resolutions to compress

redundancy. Consider the map boundaries shown in figure 1. If the map window is divided in

half in both the X and Y directions, four panels (quadrants) are identified. That superimposes a

coarse grid of just two columns and two rows.

Figure 1. Quadtree data structure elements.

At that point the computer tests whether any quadrant wholly contains a single map

characteristic. In the example there are none, so each of the panels is divided into its quads

(Level 2). At that point, there are seven of the 16 quadrants that wholly contain a single

characteristic. Their positions in the four-by-four grid are noted, and the remaining nine mixed

panels are divided into their quads (Level 3). Fourteen of these are noted as completed, and the

remaining 22 are divided for Level 4 of the quadtree. The process is repeated until an

appropriate quad level resolution is reached. At level 16, a gridding resolution of 65,536 rows

by 65,536 columns is available wherever it is needed— that equates to a fixed raster grid of

4,294,967,296 cells! But the quadtree isn't forced to use that resolution everywhere so it

accurately stores most maps in less than a megabyte.

Quadtrees and run-length data structures are good at compressing raster data. However, they

must be decompressed and then recompressed for most map analysis operations. Many GISs

don't impose a compression routine within the data structure, but simply leave it to commercial

hard disk compression packages. Such packages respond to data redundancy and optimize for

disk head movement.

The Triangulated Irregular Network (TIN) data structure is a vector offshoot originally designed

for elevation data. It avoids the redundancy of elevations in a normal raster representation and is

BM_II_T6_files/image007.png

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 9

more efficient for some terrain analysis operations, such as slope and aspect. It uses a set of

irregularly spaced elevation measurements with intensive sampling in areas of complex relief

and/or important features, such as ridges and streams. A bit of computer wizardry is applied to

determine the network of triangular facets that best fits these data. Each facet has three

interconnected elevations and can be visualized as a tilted triangular plane. The direction cosines

of the plane identify its slope and aspect. The average of the three elevations generalizes the

plane's height.

As shown in figure 2, the XY coordinate (location) and the z coordinate (elevation) are stored in

a points table similar to traditional vector structure. The triangular facets are defined in a

features table by their three nodes and adjoining facets. The final link is to an attribute table

which contains descriptive information on each facet. Awesome shaded relief maps can be

generated by plotting the facets in 3-D and shading them as functions of their slopes and aspects.

Figure 2. TIN data structure elements.

Using a TIN rather than raster structure to characterize a three-dimensional surface has some

significant advantages. It usually requires fewer points, captures discontinuities such as streams

and ridges, and determines slope and aspect of the facet itself. It's the data structure of choice for

most civil engineering packages designed for terrain analysis. However, it's inappropriate for a

generalized GIS that mixes a variety of maps. First, it's like raster, because it uses a mosaic of

geographic chunks to represent a map feature. The chunks are inconsistent between maps,

however, and something as simple as map overlay takes a severe hit in performance. Also, TIN

two-dimensional renderings are complex and bewildering to most users compared to a normal

raster display or vector contour plot.

BM_II_T6_files/image017.png

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 10

Quadtree and TIN are useful offshoots of basic raster and vector data structures. They provide

important benefits for certain data under certain conditions. If they match your needs, they're an

invaluable addition to your GIS arsenal.

Rasterized Lines and Vectorized Cells
(GeoWorld, August 1995)

(return to top of Topic)

Chances are your GIS is (or will be) ambidextrous. It has a vector side and a raster side, and

might even have TIN or quadtree sides. The different data structures indicate various

perspectives on data types and user applications. The vector approach characterizes discrete map

objects and is influenced by applications in computer graphics. Raster characterizes continuous

mapped data and emerges from remote sensing applications that involve multivariate statistics.

Today, considerations in database/hardware structure influence future development as much as

historical user/GIS representation theory. In a sense, the realities of an evolving computer

environment challenge traditional ways.

A rasterized lines structure is an interesting offshoot from traditional data structures. It's sort of

a hybrid because it uses a grid structure to characterize a map's line work. An optical scanner is

used to “turn on” each cell in a fine sampling matrix that corresponds to the set of lines. The

process is similar to the way your office fax machine “reads" a document. The fax at the other

end simply deciphers the on-off conditions in the matrix and puts a dab of black toner at spots

corresponding to “on." It skips over the "off" spots, leaving just white paper. That’s it, a black-

and-white rendering of map lines pushed over the phone lines.

If you use a magnifying glass, you can see the individual dots. At normal viewing distances,

however, they merge to form smooth lines. Your brain easily makes sense of the pattern of lines

and implied polygons embedded in the fine grid of the sampling matrix. Which streams are

connected to which streams and which lakes are in which watersheds are obvious from the

graphic rendering.

But that's not the case for a computer-the image is just a jumble of on and off dots. The first step

in imposing order on data structure is to locate and mark as nodes all the special dots where lines

meet (intersections), or just hang out by themselves (end points). Traditional vector structuring

simply follows the dots between nodes and then storing the coordinates for a point whenever

there is a significant X or Y deflection. The result is a series of discrete points connected by

implied straight lines, as shown in inset 2 of figure 1. The nodes and intervening points then

indexed files, as described in the previous section.

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 11

Figure 1. Rasterized lines data structure elements.

Rasterized lines retain all the dots along the lines. At first that seems stupid, because the points

file is huge. Where an arc might require 10 discrete points, a rasterized line might require 100 or

more. Some tricks in data compression and coordinate referencing can help, but it requires a lot

more storage any way you look at it. So why would anybody use a rasterized line structure?

Primarily because it's a format hardware loves. Faxes, scanners, screens, plotters and printers are

based on dot patterns. As a result, much attention is paid to handling dotted data efficiently.

Also, advances in optical disk storage and memory chips are redefining our concept of a "storage

hog" so these files seem smaller each year.

More important, however, are advancements in central processing units (CPUs). Most

computers still use a "kur-plunk-a" processing approach developed in the 1940s. It mimics our

linear thinking and the way we do things-do A, then B, then C. Array and parallel processors,

however, operate simultaneously on whole sets of data, provided they're organized properly.

Suppose you want to overlay a couple of traditional vector maps. In an instant, the computer

reads the coordinates for two points on one map, and then has to figure out if the implied line

segment between them crosses any implied line segment on the other map. If it does, it

mathematically calculates the point of intersection, splits the two lines into four, and then

updates all the indexed tables. Whew! That approach is a lot of work, and it's a purely linear

process and a mismatch for array processing.

If the data are in rasterized line format, however, an array processor merely reads the

corresponding chunks of cells on both maps and multiplies them together (a Boolean operation

for you techy types). The product array identifies the composite of the two maps and highlights

the new nodes where lines cross. Don't get me wrong: I'm not advocating you run out and buy

BM_II_T6_files/image021.png

From the online book Beyond Mapping II by Joseph K. Berry, www.innovativegis.com/basis/. All rights reserved. Permission to copy
for educational use is granted.
Page 12

rasterized line systems, but they have some interesting features for tomorrow's computers.

Another interesting offshoot, vectorized cells, cheats by storing each cell of an analysis grid as an

individual polygon (figure 2). It just so happens that all of the polygons have the same square

configuration and adjoin their neighbors. From a traditional vector perspective, each point

defining a cell is a node; each cell side is an arc composed of just two nodes; and each cell is a

polygonal feature composed of just four arcs. That approach uses the existing vector structure

without impacting the existing code. It simply imposes consistency and uniformity in the

polygons. All that's needed is an import module to generate the appropriate configuration of

vectorized cells and read the raster values into a field in the corresponding attribute table.

Raster-to-vector conversion can be completed by dissolving the pseudo-boundaries between

adjoining polygons with the same value. Line features can be converted by connecting the

centers of cells with similar value. Point features are represented by the coordinates of isolated

cell centers.

Figure 2. Vectorized cells data structure elements.

Vectorized cells initially were used to "kludge" a link from raster to vector systems. However,

the inherent consistency and uniformity of the structure (four points to a polygon), coupled with

advances in data compression and database technology, might spark a resurgence in interest.

Things as fluid because computers are becoming less bounded by storage requirements and the

industry is shifting toward new processors and operating systems. Keep in mind that there are

only two things certain about data structures: (1) tomorrow there will be new ones, and (2) what's

good for one application isn't necessarily the best for another.

 (return to top of Topic)

(Back to the Table of Contents)

http://www.innovativegis.com/basis/MapAnalysis/ChronList/ChronologicalListing.htm
BM_II_T6_files/image023.png

